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Abstract
In an era of increasing need for precision medicine, machine learning has shown promise in making accurate acute 
myocardial infarction outcome predictions. The accurate assessment of high-risk patients is a crucial component 
of clinical practice. Type 2 diabetes mellitus (T2DM) complicates ST-segment elevation myocardial infarction 
(STEMI), and currently, there is no practical method for predicting or monitoring patient prognosis. The objective 
of the study was to compare the ability of machine learning models to predict in-hospital mortality among STEMI 
patients with T2DM. We compared six machine learning models, including random forest (RF), CatBoost classifier 
(CatBoost), naive Bayes (NB), extreme gradient boosting (XGBoost), gradient boosting classifier (GBC), and logistic 
regression (LR), with the Global Registry of Acute Coronary Events (GRACE) risk score. From January 2016 to January 
2020, we enrolled patients aged > 18 years with STEMI and T2DM at the Affiliated Hospital of Zunyi Medical 
University. Overall, 438 patients were enrolled in the study [median age, 62 years; male, 312 (71%); death, 42 (9.5%]). 
All patients underwent emergency percutaneous coronary intervention (PCI), and 306 patients with STEMI who 
underwent PCI were enrolled as the training cohort. Six machine learning algorithms were used to establish the 
best-fit risk model. An additional 132 patients were recruited as a test cohort to validate the model. The ability of 
the GRACE score and six algorithm models to predict in-hospital mortality was evaluated. Seven models, including 
the GRACE risk model, showed an area under the curve (AUC) between 0.73 and 0.91. Among all models, with an 
accuracy of 0.93, AUC of 0.92, precision of 0.79, and F1 value of 0.57, the CatBoost model demonstrated the best 
predictive performance. A machine learning algorithm, such as the CatBoost model, may prove clinically beneficial 
and assist clinicians in tailoring precise management of STEMI patients and predicting in-hospital mortality 
complicated by T2DM.
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Introduction
ST-segment elevation myocardial infarction (STEMI) is 
a severe type of acute myocardial infarction (AMI) with 
a poor prognosis and an association with high morbid-
ity and mortality [1–3]. There are multiple risk factors 
for STEMI, including tobacco use, dyslipidemia, hyper-
tension, diabetes mellitus (DM), and familial history 
of coronary artery disease (CAD) [4–6]. Particularly, 
STEMI patients with type 2 diabetes mellitus (T2DM) 
face an increased risk of cardiovascular complications, 
with a myocardial infarction rate 2–4 times higher than 
that in non-diabetic patients [7]. Although recent studies 
have shown that proactive management of T2DM signifi-
cantly reduces cardiovascular complications and mortal-
ity, the overall prognosis for STEMI patients with T2DM 
remains poor [8–11].

Traditional models, such as the GRACE score based on 
clinical data and the TIMI score based on coronary angi-
ography information, have been used to predict patient 
outcomes [12, 13]. However, the performance of these 
scores in prognosis prediction has certain limitations, 
and there is a risk of delayed scoring. Machine Learn-
ing (ML), in contrast, demonstrates superior predictive 
power in identifying interaction patterns between vari-
ables, especially in predicting in-hospital mortality and 
short-term outcomes for acute myocardial infarction 
patients, compared to conventional statistical methods 
[14, 15].

Currently, there is no ML model capable of detecting 
in-hospital mortality for STEMI patients with T2DM. 
Therefore, this study aims to develop an accurate and 
effective ML model to predict outcomes for STEMI 
patients with T2DM, offering better treatment options 
and reducing perioperative complications in these 
patients.

Methods
Study population
Between January 2016 and June 2020, patients from 
the affiliated hospital of Zunyi Medical University were 
recruited [5]. All patients met the diagnostic criteria for 
STEMI and underwent primary PCI according to the 
current guidelines [16]. Throughout this study, all proce-
dures involving human participants were in accordance 
with the Declaration of Helsinki. The present study was 
approved by the Ethical Evaluation Committee of Zunyi 
Medical Hospital (ZMU〔2022〕1-177).

Definitions and data collection
Data about demographics, clinical outcomes, and proce-
dural characteristics were collected using a standardized 
form. Baseline data on patient characteristics were col-
lected from both medical records and standardized in-
person interviews during the index admission for AMI. 

In this study, T2DM was defined as a chart diagnosis of 
diabetes or the use of glucose-lowering medication at 
AMI presentation [17]. Delay was defined as the upper 
limit of time from onset to the hospital first medical con-
tact > 12  h. The cohort studies were reported in accor-
dance with Transparent Reporting of a Multivariable 
Prediction Model for Individual Prognosis or Diagnosis 
(TRIPOD). The electronic health records were used to 
collect and analyze the complete case data. In our study, 
the assessment of predictive factors was performed with-
out the knowledge of the participants’ outcomes. An 
independent observer recorded in-hospital deaths.

ML algorithm methods
We developed six ML algorithms to model our data: ran-
dom forest (RF), CatBoost classifier (CatBoost), Naive 
Bayes (NB), Logistic Regression (LR), gradient boost-
ing classifier (GBC), and extreme gradient boosting 
(XGBoost). Using a randomization process, we split our 
dataset into two groups: a training set (70%) to develop 
the ML models and a validation set (30%) to examine 
model performance. Using 10-fold cross-validation to 
ensure the robustness of validation set results.

Missing data
Complete case data were collected from the electronic 
health records (EHRs) and analyzed. To simplify the 
review and ensure accuracy, variables with more than 
20% of observations missing were also removed.

Statistical analysis
Continuous variables are presented as median (IQR), and 
categorical variables are presented as n (%). During train-
ing, the ML-based models were tuned to avoid overfit-
ting, and the models were internally validated using all 
data via 10-fold cross-validation. The following indicators 
were used to define model performance: area under the 
curve (AUC), recall, precision, and F1 value. In the ROC 
analysis of the entire dataset, a 95% confidence interval 
was used to assess statistical significance and compare 
models. All statistical analyses were conducted using 
Python (version 3.7) and R (version 4.0.2).

Results
A total of 438 patients with STEMI registered in the 
database between January 2016 and January 2020 
were included (Fig.  1). The median patient age was 62 
(52–71) years, 71% were male, and 42(9.5%)patients 
died in the hospital. All patients underwent emer-
gency PCI. A comparison of the demographic data and 
baseline characteristics between patients is shown in 
Table  1. Six ML models (LR, RF, CatBoost, XGBoost, 
GBC, and NB) were developed to predict in-hospi-
tal mortality rates based on all available features. A 
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comparison of the predictive performances of the 
six ML algorithm models in the validation set is pre-
sented in Table  2. CatBoost (AUC = 0.92 [95%CI:0.909–
0 . 9 2 2 ] ) , X G B o o s t ( A U C  =  0 . 8 8 [ 9 5 % C I : 0 . 8 7 5 –

0 . 8 9 1 ] ) , R F ( A U C   =   0 . 8 9 [ 9 5 % C I : 0 . 8 8 3 –
0 . 9 0 4 ] ) , G B C ( A U C  =   0 . 9 1 [ 9 5 % C I : 0 . 9 0 3 –
0.916]),NB(AUC =  0.87[95%CI:0.859–0.878]),and 
LR(AUC = 0.84[95%CI:0.833–0.855]) provided similar 

Fig. 2  The relative importance of variants in machine learning algorithms

 

Fig. 1  Flow diagram outlining the study process

 



Page 4 of 9Chen et al. BMC Cardiovascular Disorders          (2023) 23:585 

Variables Total (n = 438) Death (n = 42) Survival (n = 396) P statistic
Demographic characteristics
Sex, n (%) 0.021 5.293

  female 126 (29) 19 (45) 107 (27)

  male 312 (71) 23 (55) 289 (73)

Age, Median (Q1,Q3) 62 (52, 71) 71 (62.2, 76.8) 60 (52, 70) < 0.001 11,548

Weekend on admission, n (%) 159 (36) 12 (29) 147 (37) 0.354 0.859

Vascular risk factors
Hypertension, n (%) 273 (62) 24 (57) 249 (63) 0.574 0.316

  Smoke, n (%) 249 (57) 18 (43) 231 (58) 0.078 3.103

  Stroke, n (%) 28 (6) 4 (10) 24 (6) 0.33 Fisher

  CKD, n (%) 58 (13) 12 (29) 46 (12) 0.004 8.083

  Delay, n (%) 126 (29) 11 (26) 115 (29) 0.835 0.044

Electrocardiographic diagnosis
Inferior wall STEMI, n (%) 191 (44) 12 (29) 179 (45) 0.057 3.621

Anterior wall STEMI, n (%) 230 (53) 26 (62) 204 (52) 0.263 1.253

Other STEMI, n (%) 12 (3) 1 (2) 11 (3) 1 Fisher

Right ventricular STEMI, n (%) 7 (2) 1 (2) 6 (2) 0.509 Fisher

Clinical data
Heart rate, Median (Q1,Q3) 81.5 (73, 95) 90.5 (75, 111) 81 (73, 93) 0.018 10166.5

SBP, Median (Q1,Q3) 130 (113, 142) 128 (105.2, 139.8) 130 (114, 142) 0.24 7399

DBP, Mean ± SD 81 ± 16.3 75.9 ± 19.2 81.5 ± 15.9 0.073 -1.831

Shock index, Median (Q1,Q3) 0.6 (0.6, 0.7) 0.7 (0.6, 0.8) 0.6 (0.5, 0.7) 0.037 9940

Killip, n (%) < 0.001 Fisher

  1 349 (80) 16 (38) 333 (84)

  2 47 (11) 5 (12) 42 (11)

  3 19 (4) 6 (14) 13 (3)

  4 23 (5) 15 (36) 8 (2)

OHCA, n (%) 22 (5) 17 (40) 5 (1) < 0.001 Fisher

Laboratory examinations on admission
WBC, Median (Q1,Q3) 10.4 (8.5, 13.4) 12.3 (9.5, 18.7) 10.4 (8.3, 13.1) 0.001 10,789

Neutrophil count, Median (Q1,Q3) 8.2 (6, 10.9) 10.1 (8.1, 15.3) 8 (5.9, 10.6) < 0.001 11360.5

NLR, Median (Q1,Q3) 5.9 (3.3, 9.5) 8.6 (5.8, 13.1) 5.8 (3.1, 9.3) < 0.001 11,351

PLR, Median (Q1,Q3) 143.6 (95.1, 204.3) 181.2 (95.5, 276) 142.1 (95.6, 195.6) 0.013 10,205

MLR, Median (Q1,Q3) 0.5 (0.3, 0.7) 0.6 (0.4, 0.9) 0.5 (0.3, 0.7) 0.022 10058.5

SIRI, Median (Q1,Q3) 3.8 (2.2, 6.7) 5.6 (3.6, 9.9) 3.6 (2.2, 6.4) < 0.001 11100.5

SII, Median (Q1,Q3) 1136.5 (635.1, 1968.1) 1823.1 (1243.6, 3138.4) 1078.1 (629, 1879.5) < 0.001 11,205

HB, Mean ± SD 137.4 ± 21.4 124.7 ± 22.8 138.8 ± 20.8 < 0.001 -3.827

RBC, Median (Q1,Q3) 4.6 (4.1, 5) 4.1 (3.7, 4.8) 4.6 (4.1, 5) 0.002 5856.5

PLT, Median (Q1,Q3) 199 (162, 247) 200.5 (163.5, 274.5) 199 (162.5, 245) 0.593 8711.5

ALT, Median (Q1,Q3) 31 (21, 48) 37 (20, 69) 30.5 (21, 47.2) 0.09 9328

AST, Median (Q1,Q3) 63 (34.5, 134) 128 (47, 241) 59.5 (34, 121.2) 0.01 10048.5

GGT, Median (Q1,Q3) 42 (26, 70.2) 35 (25, 74) 42 (27, 70) 0.846 7867

BUN, Median (Q1,Q3) 5.7 (4.7, 7.6) 8.9 (5.5, 11.6) 5.6 (4.6, 7.3) < 0.001 11,523

Creatinine, Median (Q1,Q3) 80 (63, 101) 112 (84, 162) 78 (62, 98) < 0.001 11892.5

UA, Median (Q1,Q3) 361 (287, 435) 449 (368, 545) 355 (280, 419.2) < 0.001 11,609

CyC, Median (Q1,Q3) 1 (0.8, 1.3) 1.6 (1.1, 1.9) 1 (0.8, 1.2) < 0.001 11852.5

CK, Median (Q1,Q3) 454 (175, 1153.2) 574.5 (256.5, 1379.2) 423 (174.8, 1105.5) 0.187 9346

CKMB, Median (Q1,Q3) 44 (22, 101) 66 (29.8, 107.8) 43 (21, 101) 0.095 9618

LDH, Median (Q1,Q3) 366.5 (262.2, 581.2) 530 (391, 829.2) 344 (258.8, 561.5) < 0.001 11,641

HBDH, Median (Q1,Q3) 257 (172, 447.8) 393 (241.5, 631.8) 249.5 (166, 424) < 0.001 11,338

CTnT, Median (Q1,Q3) 809.8 (175.2, 2413.2) 2294 (648.6, 5431) 746.4 (145.7, 2195.5) < 0.001 11192.5

myoglobin, Median (Q1,Q3) 233.6 (62.5, 728.4) 705.9 (141.1, 1912) 216.4 (55.8, 659.7) < 0.001 10,777

BNP, Median (Q1,Q3) 840.9 (236.8, 2616.8) 5483.5 (1445, 11624.5) 753.4 (194.3, 2269.5) < 0.001 11536.5

Table 1  Demographics and clinical characteristics of patients with and without mortality in the cohort
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accuracy values in our study. The GRACE risk assessment 
tool (AUC = 0.83[95%CI:0.789–0.862]) also demonstrated 
good discriminatory ability. We investigated the possibil-
ity of ensembling and combining different models to fur-
ther optimize the models, including bagging, boosting, 
and stacker methods, and found that the performance of 
the ML models did not improve significantly.

Figure 2 illustrates the relative importance of the vari-
ables in each ML algorithm. Excluding the logistics 
model, the top 10 most important intersection vari-
ables of the other five excellent ML models are shown 
in Fig.  3. We can see a general trend in the evidence: 
despite the slight difference in the importance of vari-
ables in these ML algorithms, factors including out-of-
hospital cardiac arrest (OHCA), GRACE, and blood 
urea nitrogen (BUN) ranked in the top five (Fig. 3). The 

neutrophil-to-lymphocyte ratio (NLR), B-type natriuretic 
peptide (BNP), and cystatin C were ranked in the top ten. 
Conversely, the cardiac troponin T and creatinine vari-
ables contributed little to the prediction. The significance 
of the high-ranking variables in the CatBoost model 
decreased in the following order: GRACE, OHCA, myo-
globin, BNP, and NLR. There are challenges involved in 
saving patients who were hypoperfused when they were 
admitted due to STEMI. The CatBoost model demon-
strated the highest performance of the predictive models, 
with an AUC of 0.92, precision of 0.79, and accuracy of 
0.93. Therefore, we selected the CatBoost model as the 
final predictive model for application to the validation set 
(Fig. 4).

Table 2  Comparison of validation set results of the machine learning models
Model Accuracy

[95%CI]
AUC
[95%CI]

Recall
[95%CI]

Precision
[95%CI]

F1
[95%CI]

CatBoost Classifier 0.93
[0.925–0.932]

0.92
[0.909–0.922]

0.52
[0.485–0.548]

0.79
[0.755–0.815]

0.57
[0.544–0.599]

Gradient Boosting Classifier 0.91
[0.908–0.916]

0.91
[0.903–0.916]

0.46
[0.431–0.486]

0.67
[0.639–0.694]

0.52
[0.493–0.543]

Random Forest Classifier 0.92
[0.918–0.926]

0.89
[0.883–0.904]

0.54[0.511–0.572] 0.74
[0.707–0.766]

0.58
[0.551–0.604]

Extreme Gradient Boosting 0.91
[0.909–0.916]

0.88
[0.875–0.891]

0.52
[0.483–0.55]

0.56
[0.531–0.592]

0.51
[0.478–0.536]

Naive Bayes 0.9
[0.895–0.902]

0.87
[0.859–0.878]

0.73
[0.704–0.746]

0.58
[0.563–0.596]

0.62
[0.609–0.634]

Logistic Regression 0.9
[0.891-0.9]

0.84
[0.833–0.855]

0.4
[0.373–0.427]

0.55
[0.516–0.584]

0.39
[0.36–0.414]

GRACE 0.83
[0.789–0.862]

- - -

Bagging-Catboost 0.93
[0.925–0.932]

0.92
[0.91–0.923]

0.52
[0.485–0.548]

0.79
[0.755–0.815]

0.57
[0.52–0.622]

Boosting-Catboost 0.92
[0.914–0.923]

0.9
[0.894–0.912]

0.49
[0.461–0.523]

0.68
[0.645–0.705]

0.54
[0.513–0.57]

Blend model-ALL model 0.92
[0.918–0.926]

0.92
[0.91–0.924]

0.52
[0.485–0.548]

0.74
[0.705–0.765]

0.57
[0.537–0.593]

Stacker model-ALL model 0.93
[0.922–0.929]

0.92
[0.918–0.93]

0.48
[0.455–0.512]

0.79
[0.755–0.815]

0.55
[0.526–0.577]

Variables Total (n = 438) Death (n = 42) Survival (n = 396) P statistic
Diseased vessel during procedure

  LM, n(%) 16 (4) 1 (2) 15 (4) 1 Fisher

  LAD, n(%) 317 (88) 22 (79) 295 (89) 0.119 Fisher

  LCX, n(%) 212 (75) 18 (78) 194 (75) 0.916 Fisher

  RCA, n(%) 262 (85) 18 (78) 244 (86) 0.354 Fisher

Risk assessment

GRACE, Median (Q1,Q3) 118 (99, 139) 174.5 (134.2, 198.8) 115 (98, 133.2) < 0.001 13771.5
Abbreviations: Shock index, ratio of HR to SBP; SIRI, systemic inflammatory response index; SII, systemic inflammatory reaction index; PLR, platelet-to-lymphocyte 
ratio; NLR, neutrophil-to-lymphocyte ratio; MLR, monocyte-to-lymphocyte ratio; OHCA, out-of-hospital cardiac arrest; GRACE, Global Registry of Acute Coronary 
Events score; α-HBDH, α-hydroxybutyrate dehydrogenase; BNP, B-type natriuretic peptide; CTnT, cardiac troponin T; CyC, Cystatin C; RCA, right coronary artery; 
LCX, left circumflex artery; LAD, left anterior descending artery; LM, left main artery; RBC, red blood cell; PLT platelet; AST, Aspartate aminotransferase; ALT, alanine 
aminotransferase; GGT, gamma-glutamyltransferase; BUN, blood urea nitrogen; UA, uric acid

Table 1  (continued) 
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Discussion
This study aimed to develop an accurate and user-
friendly prediction model for STEMI patients with 
T2DM to enhance therapeutic decision-making and 
reduce periprocedural complications. Our approach lev-
eraged machine learning (ML) algorithms, known for 
their exceptional performance over traditional regression 
methods in large-scale outcome prediction [14, 15, 18, 
19]. We focused on integrating ML techniques with pre-
operative clinical data for this patient group.

We addressed the challenge of potential data lag in the 
risk model, which incorporates preoperative, intraopera-
tive, and postoperative clinical data, as this can delay the 
prediction of adverse events. While logistic regression 
is often chosen in traditional binary outcome predic-
tion models for its strong predictive power and model 
interpretability, in our study, CatBoost showed superior 
performance. Among the five ML models, the GRACE 
variable and OHCA were the strongest predictors of 
almost all the analysis methods. Coronary artery dis-
ease, particularly acute coronary syndrome, is the leading 
cause of OHCA in Asians. The survival rate for Asians 
with OHCA is 3.0% [20]. The treatment of post-resusci-
tation is dependent on emergency coronary angiography 
and PCI. Therefore, this study again validated the effec-
tiveness of the GRACE score in a cohort of patients with 

T2DM and STEMI while finding that ML models had 
better model discrimination and accuracy. Moreover, it 
is worth mentioning that, in the case of medical sample 
imbalance, some studies propose that the model integra-
tion technology can significantly improve model perfor-
mance and capability [14, 21].

ML in clinical medicine faces challenges like data qual-
ity and processing complexity, with ML model features 
often being subtle and difficult for clinicians to inter-
pret. Despite these challenges, ML has achieved signifi-
cant breakthroughs in biomedicine. For example, ML 
algorithms have been utilized to analyze complex, high-
dimensional data in 12-lead ECGs, predicting artery 
occlusion in myocardial infarction cases [22]. Liang et 
al.‘s study effectively used ML to predict heart failure 
risk during hospitalization for patients with acute ante-
rior wall ST-segment elevation myocardial infarction, 
employing parameters such as VF, CAP, age, LVEF, and 
NT-pro-BNP peak levels. This approach enabled the 
identification of high-risk patients, guiding personal-
ized and proactive management strategies [23]. Further, 
research by Tofighi et al. demonstrated the efficacy of 
ML in identifying high-risk STEMI patients for adverse 
events during follow-up, aiding in crafting individualized 
treatment plans to improve outcomes and lessen disease 
burden [24]. Avvisato’s study illustrated ML’s power-
ful capacity to dissect individual variations in the whole 

Fig. 3  Cross-verification in the top 10 variables of the machine learning models

 



Page 7 of 9Chen et al. BMC Cardiovascular Disorders          (2023) 23:585 

brain functional connectome, aiding in the diagnosis of 
neurological diseases and predicting clinical outcomes 
[25]. Those predictive models can be seamlessly inte-
grated into the emergency visit process to aid physicians 
in determining the prognosis of patients’ conditions. 

By prioritizing higher-risk patients for more immedi-
ate and comprehensive care and monitoring or schedul-
ing follow-ups for lower-risk patients, this approach not 
only optimizes emergency physicians’ workflow but also 
ensures that patients receive care tailored to their specific 

Fig. 4  Visualization of CatBoost model performance in the validation set. (A) AUCROC curve. (B) Precision-recall curve. (C) Calibration curve. (D) Classifica-
tion report. (E) Decision boundary. (F) Feature SHAP value
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risk profiles. Therefore, understanding the synthetic sig-
nificance of clinical data samples and the models and 
methods to accurately diagnose diseases or predict the 
occurrence of adverse events will remain a persistent 
focus in medical integration.

Limitations
This study also has some limitations. Firstly, being a sin-
gle-center study, the generalizability of our results might 
be limited. Additionally, its retrospective design raises 
the possibility of selection bias, which could affect the 
interpretation of results and the applicability of predic-
tion models. Secondly, like other similar studies, ours 
relied on clinical data elements such as medical history, 
physical examination, and lab findings as input features. 
This reliance potentially restricts the model’s applica-
bility in real-world settings and results in some models 
lacking interpretability. Thirdly, akin to most studies 
[26], ours used a single dataset for training and testing 
the model, but the sample size was insufficient for pre-
cise testing and training, mainly due to a lack of adequate 
positive samples. Even though synthetic sampling tech-
niques were employed, the improvement was not sig-
nificant, indicating a need for studies with larger sample 
sizes in this field. Fourthly, the absence of external vali-
dation in our study could lead to overfitting. Fifth, While 
the GRACE score’s inclusion might enhance the model’s 
predictive accuracy, it can also complicate the interpre-
tation, as the score itself is a composite measure. This 
layer of abstraction might obscure the individual impact 
of the clinical variables constituting the GRACE score. 
Relying heavily on an existing score can affect the robust-
ness of the model, potentially making it more sensitive to 
any biases or limitations inherent in the GRACE score. 
Lastly, the indicators included in the analysis were not 
comprehensive, missing crucial variables such as a time-
line of medical visits, medication usage, etc., all of which 
could influence the outcomes. Therefore, future research 
should employ larger sample sizes and more scientific 
methodologies.

Conclusion
In this study, various ML methods were used to establish 
in-hospital death prediction models for AMI complicated 
by diabetes. Compared with the traditional model and 
GRACE score, the predictive discrimination of the ML 
model based on the CatBoost algorithm was more accu-
rate. Although this ML algorithm presently has a good 
prediction ability, it still requires further scientific and 
reasonable external verification.
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