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Abstract 

Background  Acute myocardial infarction (AMI) is indeed a significant cause of mortality and morbidity in individuals 
with coronary heart disease. Ferroptosis, an iron-dependent cell death, is characterized by the accumulation of intra-
cellular lipid peroxides, which is implicated in cardiomyocyte injury. This study aims to identify biomarkers that are 
indicative of ferroptosis in the context of AMI, and to examine their potential roles in immune infiltration.

Methods  Firstly, the GSE59867 dataset was used to identify differentially expressed ferroptosis-related genes 
(DE-FRGs) in AMI. We then performed gene ontology (GO) and functional enrichment analysis on these DE-FRGs. 
Secondly, we analyzed the GSE76591 dataset and used bioinformatic methods to build ceRNA networks. Thirdly, we 
identified hub genes in protein–protein interaction (PPI) network. After obtaining the key DE-FRGs through the junc-
tion of hub genes with ceRNA and least absolute shrinkage and selection operator (LASSO). ImmucellAI was applied 
to estimate the immune cell infiltration in each sample and examine the relationship between key DE-FRGs and 24 
immunocyte subsets. The diagnostic performance of these genes was further evaluated using the receiver operating 
characteristic (ROC) curve analysis. Ultimately, we identified an immune-related ceRNA regulatory axis linked to fer-
roptosis in AMI.

Results  Among 56 DE-FRGs identified in AMI, 41 of them were integrated into the construction of competitive 
endogenous RNA (ceRNA) networks. TLR4 and PIK3CA were identified as key DE-FRGs and PIK3CA was confirmed 
as a diagnostic biomarker for AMI. Moreover, CD4_native cells, nTreg cells, Th2 cells, Th17 cells, central-memory 
cells, effector-memory cells, and CD8_T cells had higher infiltrates in AMI samples compared to control samples. In 
contrast, exhausted cells, iTreg cells, and Tfh cells had lower infiltrates in AMI samples. Spearman analysis confirmed 
the correlation between 24 immune cells and PIK3CA/TLR4. Ultimately, we constructed an immune-related regulatory 
axis involving XIST and OIP5-AS1/miR-216a/PIK3CA.

Conclusion  Our comprehensive analysis has identified PIK3CA as a robust and promising biomarker for this condi-
tion. Moreover, we have also identified an immune-related regulatory axis involving XIST and OIP5-AS1/miR-216a/
PIK3CA, which may play a key role in regulating ferroptosis during AMI progression.
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Introduction
As early as 1998, AMI has consistently maintained its sta-
tus as the most common and lethal cardiac event globally 
[1]. AMI occurs when a supply artery is blocked, leading 
to reduced blood flow and insufficient oxygen supply to 
the myocardial tissue downstream of the blockage. This 
insufficient blood flow and oxygen supply result in myo-
cardial injury. Following an AMI attack, the ischemic 
heart tissue undergoes inflammation, fibrosis, and irre-
versible necrosis of myocardium [2]. So far, there are 
many vital treatments clinically available to rescue the 
ischemic heart tissue [3, 4], but only a few AMI victims 
can benefit from them on account of individual differ-
ences in efficacy and hemorrhage-related complications. 
Therefore, identifying potential biomarkers, seeking the 
molecular mechanisms, and finding innovative therapeu-
tic targets for AMI have become urgent affairs.

Ferroptosis is induced by intracellular iron-mediated 
oxidative stress, characterized by accumulations of lipid 
peroxides [5, 6]. The molecular mechanisms involved in 
ferroptosis include maladjustment of two major redox 
systems (lipid peroxidation and thiols), abnormal iron 
metabolism, and some critical enzymes (like Glutathione 
Peoxidase-4, GPX4) [7]. Ferroptosis was first described in 
the central nervous system [8], but current studies sug-
gest that ferroptosis has an important regulatory role in 
AMI [9]. For example, inhibiting the Hif1a/Ptgs2 path-
way can have a protective role in coronary emboliza-
tion-induced myocardial injury through mitigating the 
harmful effects of ferroptosis [10]. Under cysteine dep-
rivation, neonatal rat ventricular myocytes (NRVM) rap-
idly respond to ferroptosis induced by GPX4 inhibition, 
aggravating myocardial damage during AMI [11]. There-
fore, inhibiting ferroptosis in cardiomyocyte can exert 
myocardial protective effects, investigating the precise 
regulatory mechanisms associated with ferroptosis in the 
context of AMI is crucial.

The advancement of high-throughput technology has 
facilitated the identification and exploration of non-cod-
ing RNAs, including long non-coding RNAs (lncRNAs), 
microRNAs (miRNAs) and circular RNAs (circRNAs), 
as promising targets for the prevention, diagnosis, and 
therapeutic intervention of ischemia/reperfusion (I/R) 
injury [12]. LncRNAs, as ceRNA of miRNAs, have been 
found to regulate inflammation, lipid metabolism, angio-
genesis, and other biological functions in AMI by affect-
ing the downstream mRNA at the transcriptional level 
[13]. Hundreds of lncRNAs have been shown to regulate 
various pathological processes in AMI, making them vital 
biomarkers with better sensitivity and specificity [14]. For 
example, lncRNA TUG1 can regulate ROS accumula-
tion in cardiomyocytes by targeting miR-132-3p/HDAC3 

axis [15]. Therefore, an in-depth exploration of the func-
tion and mechanism of lncRNAs may provide a scientific 
basis for cutting-edge therapies for AMI.

The perturbation of immune system regulation plays 
a crucial role as a pathological mechanism in AMI [16, 
17], The modulation of immune cell activity deter-
mined the severity of lesions and prognosis of AMI. It is 
reported that CD4+/CD8+ effector T cell, NK cell, and 
B cell can promote chemokine production during plaque 
rupture in AMI [18]. Dysfunctional mitochondria have 
been found to be key players in inflammatory response 
[19], and alterations in mitochondrial morphology and 
metabolism are important processes in ferroptosis. This 
suggests that dysfunctional mitochondria may exert a 
crucial effect in linking AMI ferroptosis and immune cell 
infiltration. However, to date, the ferroptosis-related bio-
markers with immune infiltration in AMI have not been 
analyzed. Consequently, the assessment of ferroptosis-
related biomarkers and their correlation with immune 
infiltration during the progression of AMI holds para-
mount importance in the context of advanced targeted 
therapeutics.

In our study, DE-FRGs were identified between AMI 
and normal groups from the GEO datasets. Firstly, we 
constructed two ceRNA networks related to ferroptosis 
of AMI according to datasets and targeted gene predic-
tion analysis. By using integrated analysis among the 
ceRNA network, PPI network, and LASSO regression, 
key DE-FRGs was identified. The receiver operating char-
acteristic (ROC) curve was used to evaluate diagnos-
tic capabilities of these key DE-FRGs between AMI and 
control samples. We utilized the GSE59867 dataset for 
analyzing disparities in immune cell infiltration between 
samples from patients with AMI and normal samples. 
Spearman analysis confirmed the correlation between 
key DE-FRGs and immune cells. Eventually, the potential 
ceRNA regulatory axis related to the immune system in 
AMI was identified.

Method
Data collection and processing
The miRNA, mRNA and lncRNA sequence datasets 
were obtained from the GEO database (http://​www.​
ncbi.​nlm.​nih.​gov/​geo), which is a publicly accessible 
repository. To retrieve relevant datasets, we used the 
following search criteria: “acute myocardial infarc-
tion” AND “Homo sapiens”. Five microarray datasets 
were identified that consist of samples from both indi-
viduals with AMI and healthy controls, providing valu-
able information for our study. These datasets include 
GSE59867, GSE97320, GSE76591, GSE168149, and 

http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo


Page 3 of 17Wu et al. BMC Cardiovascular Disorders          (2024) 24:123 	

GSE66360, and they contained a total of 460 AMI sam-
ples and 120 healthy control samples. 292 ferroptosis-
related genes (FRGs) were sourced from the FerrDb 
(http://​www.​zhoun​an.​org/​ferrdb) database and previ-
ous scientific publications [20–23]. This study utilized a 
range of bioinformatics techniques and statistical anal-
yses to identify and characterize differentially expressed 
genes and relevant regulatory axis that are associated 
with ferroptosis in AMI. The detailed work procedure 
and data preprocessing steps for this study are outlined 
in Fig. 1.

Differential expression gene analysis
As an online tool available at NCBI (https://​www.​ncbi.​
nlm.​nih.​gov/), GEO2R helps us to identify differen-
tially expressed microRNAs (DE-miRNAs) and mRNAs 

(DE-mRNAs) between AMI samples and control sam-
ples. “Limma” packages was also used to assess sample 
distribution and data reliability of datasets. The volcano 
plot was utilized for visualizing the DE-miRNAs and DE-
mRNAs in the GSE76591 and GSE59867 datasets. 292 
ferroptosis-related genes were then cross-referenced with 
the DE-mRNAs to obtain DE-FRGs in AMI. Additionally, 
two heatmaps were separately generated to illustrate the 
inter-group expression of the DE-FRGs and DE-miRNAs, 
which provides a clear picture of the overall patterns of 
gene expression. The thresholds were set to P < 0.05 and 
fold change (FC) > 1.5 or FC < 0.67.

Immune infiltration analysis
To clarify the role played by immune cells during AMI 
and their regulatory role, we utilised the ImmucellAI 

Fig. 1  The workflow and data preprocessing of the overall study. DE-lncRNAs, differentially expressed lncRNAs; DE-miRNAs, differentially expressed 
miRNAs; DE-mRNAs, differentially expressed mRNAs; DE-FRGs, differentially expressed ferroptosis-related genes; PPI, protein–protein interaction; 
LASSO, least absolute shrinkage and selection operator

http://www.zhounan.org/ferrdb
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
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tool (https://​bioin​fo.​life.​hust.​edu.​cn/​web/​ImmuC​ellAI/) 
to perform immune cell infiltration analysis on data-
set GSE59867. The ImmucellAI tool uses the ssGSEA 
method to calculate the enrichment fraction of individual 
samples in the gene expression profile and to estimate the 
relative proportion of the 24 immune cell subpopulations 
in each sample [24]. The results were presented in a bar 
plot and a correlation heatmap, which showed the differ-
ences in immune cell infiltration between AMI and con-
trol samples. The statistical significance of the results was 
determined using a cut-off value of P < 0.05.

Functional enrichment analysis
To understand the biological properties and potential 
functions of the DE-FRGs, bioinformatics (http://​www.​
bioin​forma​tics.​com.​cn/), an online platform, was used 
for functional enrichment analysis [25]. Specifically, we 
performed Gene Ontology (GO) functional enrichment 
analysis (biological process (BP), molecular function 
(MF) and cellular component (CC)), as well as Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
analysis [26, 27]. Bubble and histograms are used to pre-
sent the results of GO/KEGG analysis.

Construction of ceRNA network
To better understand the regulatory mechanisms asso-
ciated with ferroptosis in AMI, we performed the con-
struction of two ferroptosis-related ceRNA networks by 
means of database prediction and data overlap. Starbase 
database (v3.0, https://​starb​ase.​sysu.​edu.​cn/​index.​php) 
was used to predict lncRNAs that interacted with DE-
miRNAs. GSE66360 dataset was used to verify predicted 
lncRNAs to obtain the intersection lncRNAs. Starbase, 
TargetScan (v7.2, http://​www.​targe​tscan.​org/​vert_​72/) 
and miRDB (v6.0, http://​mirdb.​org/) was used to pre-
dict target mRNAs of DE-miRNAs, the predicted target 
mRNAs were overlapped with the previously identified 
DE-FRGs to obtain the overlapped DE-FRGs. GSE97320 
dataset was used to verify the retained overlapped DE-
FRGs. Ultimately, by leveraging the interplay between 
mRNA, miRNA, and lncRNA molecules, we employed 
Cytoscape software to construct ceRNA networks [28].

Protein–protein interaction analysis
In order to clarify the interactions between the proteins 
translated by the DE-FRGs, a PPI network was generated 
using the STRING database (https://​string-​db.​org/) [29]. 
A threshold of 0.4 (medium confidence) was set to deter-
mine significant interactions. Next, Minimal Common 
Oncology Data Elements (MCODE) plugin was used 
to identify significant clusters in the PPI network [30], 

The screening criteria for this cluster score were: degree 
cut-off = 3, node score cut-off = 0.2, k-core = 2, and max 
depth = 100. The cytoHubba plugin [31] was used to 
identify hub genes by Cytoscape. We employed five algo-
rithms, specifically Maximal Clique Centrality (MCC), 
Density of MNC (DMNC), Maximum Neighborhood 
Component (MNC), Degree, and EcCentricity, to evalu-
ate the top 10 hub genes [32]. All of the approaches have 
been approved by scholars and have been used in articles 
[33, 34].

Screening of key DE‑FRGs biomarker
Least absolute shrinkage and selection operator (LASSO) 
regression model uses a penalty function to reduce the 
coefficients of the regression model towards zero. This 
helps to select the most important variables and avoid 
overfitting [35]. LASSO was used to identify a subset of 
genes that are most closely associated with AMI out-
come prediction in this study. The LASSO-selected genes 
were overlapped with the hub genes in PPI network and 
DE-FRGs from ceRNA networks to identify key DE-
FRGs biomarkers for distinguishing AMI patients from 
controls.

Immune‑related analysis
To further investigate the potential association between 
the key DE-FRGs biomarker and immune cell subpopu-
lations in AMI, we performed Spearman correlation 
analysis using an expression data matrix of DE-FRGs. 
The correlation coefficient and P-value were calculated 
for the key DE-FRGs and 24 immune cell subpopulations. 
The results were then visualized using a lollipop chart, 
which correlation coefficients shown as the length of 
the sticks and P-values shown as the colour intensity. A 
P-value < 0.05 was considered statistically significant.

Diagnostic performance of key DE‑FRGs biomarker in AMI
The ROC curve illustrates the diagnostic performance 
test by depicting the trade-off between sensitivity (true 
positive rate) and specificity (true negative rate). The 
AUC is the area under the ROC curve and the closer the 
value of the AUC is to 1, the more reliable the factor is 
for the diagnosis of the disease. In our study, we used the 
area under the ROC curve to evaluate the discriminative 
power of the key DE-FRGs biomarker in distinguishing 
AMI patients from healthy controls. The 95% CI provides 
a range of values within which the true AUC is likely to 
lie [36].

https://bioinfo.life.hust.edu.cn/web/ImmuCellAI/
http://www.bioinformatics.com.cn/
http://www.bioinformatics.com.cn/
https://starbase.sysu.edu.cn/index.php
http://www.targetscan.org/vert_72/
http://mirdb.org/
https://string-db.org/
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H9C2 cardiomyocyte culture and reverse transcription 
polymerase chain reaction analysis (qRT‑PCR)
H9C2 cells was purchased from the American Model 
Species Collection Center (ATCC) and was cultured in a 
constant temperature incubator at 37℃ and 5% CO2. An 
in  vitro hypoxic cardiomyocyte model was constructed 
using a hypoxic incubator (Billups Rothenberg) with 5% 
CO2 and 95% nitrogen. The H9C2 cells were inoculated 
into a six-well plate and were subjected to hypoxia treat-
ment. When the cells grow to about 80–90%, the total 
RNA was isolated and extracted by TRIzol reagent (Invit-
rogen). A 20ul reverse transcription reaction system mix-
ture was prepared for cDNA synthesis at 50 °C, 30 min, 
75  °C, and 5 min. The real-time PCR reaction was then 
performed on the real-time PCR instrument 7500 (ABI). 
The control gene of glyceraldehyde-3-phosphate dehy-
drogenase (GAPDH) was used as the control gene, and 
the relative expression of the target gene was calculated 
by the method of 2−ΔΔCt [37]. The PCR primer sequences 
were designed by Invitrogen. The primer sequences for 
PIK3CA are as follows: forward: 5’-AGG​ATG​CCC​AAC​
TTG​ATG​CTG​ATG​-3’ and reverse: 5’-CCG​TTC​ATA​
TAG​GGT​GTC​GCT​GTG​-3’. The primer sequences for 
GAPDH are as follows: forward: 5’-CTG​GAG​AAA​CCT​
GCC​AAG​TATG-3’ and reverse: 5’-GGT​GGA​AGA​ATG​
GGA​GTT​GCT-3’.

Statistical analysis
Gene expression variability analysis of microarray 
data was performed using the GEO2R (GEO2R, http://​
www.​ncbi.​nlm.​nih.​gov/​geo/​geo2r/) platform, which 
is based on the R language and meets statistical crite-
ria. P < 0.05 and FC > 1.50 or FC < 0.67 were considered 
as screening criteria for significantly different genes, 
which is consistent with previous papers’ analysis 
methods [38, 39].

Results
Identification of 56 DE‑FRGs
This study included a total of 580 patients, consisting of 
120 control samples and 460 AMI samples. The elabo-
rated information of the 5 datasets used in the study is 
presented in Table 1. The volcano plot in Fig. 2A shows 
the data distribution of the GSE59867 datasets, a total 
of 3821 differentially expressed mRNAs (P < 0.05) were 
identified (1,681 up-regulated and 2,134 down-regu-
lated). By analyzing GSE59867 and 292 ferroptosis-
related genes, we identified 56 DE-FRGs (Fig.  2B), and 
exhibited the expression of DE-FRGs using a heatmap 
(Fig. 2C). The thresholds for significant differences were 
set at P < 0.05 and FC > 1.50 or FC < 0.67. The results of 
sample normalization and distribution of the dataset are 
shown in Supplementary Material Figure 1-5.

Immune infiltration landscapes
To gain a better understanding of the roles of immune 
cells in the AMI cardiac microenvironment, we investi-
gated the immune cell landscapes between AMI tissues 
and controls in the dataset GSE59867. For the results of 
immune infiltration, we used stacked bar plots to clearly 
show the proportion of the 24 immune cell subsets in 
each sample (Fig. 3A). The correlation heatmap between 
the 24 immune cell subpopulations in AMI showed that 
central-memory T cells were negatively correlated with 
exhausted T cells, while being positively correlated with 
Th17 cells. NK T cells and CD8 T cells respectively dis-
played positive correlations with MAIT cells and Th2 
cells (Fig.  3B). The bar diagram showed that compared 
with control samples, CD4_native cells, nTreg cells, 
Th2 cells, Th17 cells, central-memory cells, and CD8_T 
cells were all presented with higher infiltrates in AMI 
samples, but exhausted cells, iTreg cells, and Tfh cells 
were all presented with lower infiltrates in AMI samples 
(Fig. 3C).

Table 1  Comprehensive details regarding the gene expression profiles investigated in this study are provided below

Dataset Platform Experiment type Control AMI Contury Submission Samples Application

GSE59867 GPL6244 Expression profiling 
by array

46 390 Poland 2015 Peripheral blood Identification for DE-
mRNAs

GSE76591 GPL16384 Non-coding RNA profiling 
by array

12 9 Japan 2019 Human heart tissue Identification for DE-
miRNAs

GSE97320 GPL570 Expression profiling 
by array

3 3 China 2019 Peripheral blood Validation for 44 DE-FRGs

GSE66360 GPL570 Expression profiling 
by array

50 49 La Jolla 2019 Circulating endothelial 
cells

Validation for DE-lncRNAs

GSE168149 GPL19117 Non-coding RNA profiling 
by array

9 9 Germany 2021 Monocyte Validation for DE-miRNAs

http://www.ncbi.nlm.nih.gov/geo/geo2r/
http://www.ncbi.nlm.nih.gov/geo/geo2r/
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Functional enrichment analysis of 56 DE‑FRGs
To clarify the regulatory role and the signaling path-
ways that the 56 DE-FRGs functions in the organism, 
we performed GO/KEGG analysis on the 56 DE-FRGs. 
The KEGG pathway analysis revealed that these genes 
are mainly involved in the FoxO signaling pathway and 
ferroptosis (Fig.  4A). The analysis revealed that the 56 
DE-FRGs were predominantly enriched in biologi-
cal processes (BP) related to the response to oxidative 
stress, cellular response to chemical stress, and cellular 
response to oxidative stress. Regarding cellular compo-
nents (CC), the 56 DE-FRGs were associated with pro-
tein kinase complex, transferase complex, transferring 
phosphorus-containing groups and caveola. Regarding 
molecular function (MF), the 56 DE-FRGs were mainly 
linked to protein serine/threonine kinase activity, MAP 
kinase activity, and oxidoreductase activity, acting on 
single donors with incorporation of molecular oxygen, 
incorporation of two atoms of oxygen (Fig. 4B).

Construction of ceRNA network
The volcano plot in Fig. 5A shows the data distribution 
of the GSE76591 dataset, with a total of 1731 miRNAs 

identified (P < 0.05). Then, 69 DE-miRNAs were directly 
identified in the GSE76591 dataset (21 up-regu-
lated miRNAs and 48 down-regulated miRNAs), the 
screening criteria was set to P < 0.05 and FC > 1.50 or 
FC < 0.67. The heatmap demonstrates the inter-group 
differences of 69 DE-miRNAs in their expression levels 
(Fig. 5B). The Starbase database predicted that 29 DE-
miRNAs had binding sites with 147 lncRNAs among 
the identified 69 DE-miRNAs. Furthermore, combining 
the predictions from miRDB, TargetScan, and Starbase 
databases revealed that 64 DE-miRNAs had binding 
sites with downstream mRNAs among the identified 
69 DE-miRNAs. Further analysis revealed that only 29 
DE-miRNAs had binding sites with both 147 lncRNAs 
and 12,505 mRNAs. We then merged these predictive 
mRNAs with 56 DE-FRGs, identifying 44 overlapped 
DE-FRGs. We validated these 44 overlapped DE-FRGs 
using the GSE97320 dataset and 10 lncRNAs using the 
GSE66360 dataset. Based on the validation results, 44 
DE-FRGs, 29 miRNAs and 10 lncRNAs were retained 
to construct ceRNA network by Cytoscape. The first 
ceRNA network was constructed using 25 up-regulated 
DE-FRGs, 8 lncRNAs and 23 corresponding miRNAs, 
with 56 nodes and 102 edges (Fig.  5C). The second 

Fig. 2  The gene expression data of DE-mRNAs between AMI samples and control samples. A Volcano plot corresponding to the expression profile 
of DE-mRNAs in GSE59867 dataset. The pink dots represent up-regulated genes, the grey dots represent non-significant genes, the blue dots 
represent down-regulated genes. B 2 set Venn diagram shows the integration strategy among GSE59867 dataset and ferroptosis-related genes. The 
blue circle represents for ferroptosis-related genes, the red circle represents for DE-mRNAs in GSE59867 dataset. As shown, there were 56 DE-FRGs. C 
Cluster heatmap for 56 DE-FRGs in GSE59867 dataset
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ceRNA network was constructed using 16 down-reg-
ulated DE-FRGs, 10 lncRNAs and 22 corresponding 
miRNAs, with 48 nodes and 121 edges (Fig.  5D). The 
two ceRNA networks included a total of 10 lncRNAs, 
25 miRNAs, and 41 DE-FRGs (Table 2).

PPI network analysis and CytoHubba gene identification
The PPI network of 44 shared DE-FRGs showed that 
there were 42 nodes (representing proteins) and 124 
edges (representing interactions between the proteins) 
(Fig.  6A). We then further analyzed the PPI network 
using the MCODE plugin and found that there were 
2 clusters in the network, containing a total of 13 DE-
FRGs (Fig. 6B and C). The DE-FRGs in these two clus-
ters possessed a much closer interaction relationship. 
We identified the top 10 genes among 42 DE-FRGs by 
using the cytoHubba plugin, and MAPK3 (mitogen-
activated protein kinase 3), TLR4 (toll-like receptor 4) 
and PIK3CA (phosphatidylinositol-4,5-bisphosphate 
3-kinase catalytic subunit alpha) were cross-checked 
by five algorithms (Table 3). This suggest that MAPK3, 
TLR4 and PIK3CA potentially have significant involve-
ment in the pathogenesis of AMI.

Screening for key DE‑FRG biomarkers
To identify the most promising diagnostic gene bio-
markers, the LASSO regression algorithm was 
applied to the 44 retained DE-FRGs. When “lambda.
min = 0.00079”, partial likelihood deviance is minimal, 
the model fits well, 37 genes were obtained, includ-
ing ATM, CDKN1A, HELLS, ZEB1, MAFG, PTGS2, 
SLC38A1, TGFBR1, TLR4, ZFP36, ALOX15B, BID, 
DUSP1, EPAS1, PEBP1, ULK1, FANCD2, FBXW7, 
G6PD, GABARAPL2, HMOX1, IDH1, IREB2, JDP, 
LPIN1, MAPK8, MAPK9, MYC, NCF2, PCK2, PHKG2, 
PIK3CA, PRKAA1, SLC2A3, STEAP3 and VDAC2 
(Fig.  7A and B). After the 37 genes were then inter-
sected with the 41 shared DE-FRGs in ceRNA and the 
3 hub genes in PPI, we obtained 2 key DE-FRGs: TLR4 
and PIK3CA (Fig. 7C). Table 4 provided more detailed 
information about TLR4 and PIK3CA.

Immune‑related analysis
Spearman correlation analysis revealed a substantial 
relationship between PIK3CA/TLR4 and several sub-
populations of infiltrating cells. Specifically, TLR4 had 

Fig. 3  Results of immune infiltration analysis. A The stack bar diagram displays the relative percent of 24 immune cell sub-populations in each 
sample. B Correlation heatmap of 24 immune cell sub-populations. The red represents positive correlation and the blue represents negative 
correlation. C Bar diagram displays different fractions of 24 immune cell sub-populations in AMI and control samples



Page 8 of 17Wu et al. BMC Cardiovascular Disorders          (2024) 24:123 

Fig. 4  Functional enrichment results of 56 DE-FRGs. A Significant enriched KEGG pathways analysis for 56 DE-FRGs. B Significant enriched GO terms 
for 56 DE-FRGs. (CC, cellular component; BP, biological process; MF, molecular function)
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a negative correlation with Tfh cells (r = -0.68, P < 0.05), 
B cells (r = -0.42, P < 0.05), and Th1 cells (r = -0.37, 
P < 0.05), while having a positive correlation with Tr1 
cells (r = 0.46, P < 0.05) (Fig.  8A). PIK3CA had a nega-
tive correlation with CD8-naive cells (r = -0.5, P < 0.05), 

while having a positive correlation with Th1 cells 
(r = 0.47, P < 0.05), Effector-memory T cells (r = 0.42, 
P < 0.05), and MAIT cells (r = 0.46, P < 0.05) (Fig.  8B). 
These results suggested that PIK3CA/TLR4 could 

Fig. 5  The gene expression data of DE-miRNAs between AMI samples and control samples. A Volcano plot corresponding to the expression 
profile of DE-miRNAs in GSE76591 dataset. The pink dots represent up-regulated genes, the grey dots represent nonsignificant genes, the blue 
dots represent down-regulated genes. B Cluster heatmap for DE-miRNAs in GSE76591 dataset. C The first ceRNA network is constructed 
via 25 up-regulated DE-FRGs (green triangle) in AMI, their 23 corresponding miRNAs (blue ellipse) as well as 8 lncRNAs (red rhombus), which 
was composed of 56 nodes and 102 edges. D The second ceRNA network is constructed via 16 down-regulated DE-FRGs (green triangle) in AMI, 
their 22 corresponding miRNAs (blue ellipse) as well as 10 lncRNAs (red rhombus), which was composed of 48 nodes and 121 edges
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partly reflect the condition of the cardiac microenvi-
ronment in AMI.

Diagnostic performance of key DE‑FRGs biomarkers in AMI
TLR4 and PIK3CA have been identified as key DE-FRGs 
biomarkers with potential diagnostic value for AMI. In 
comparison to control group, the expression of TLR4 
was found to be significantly up-regulated in the AMI 
group in GSE59867 dataset (P < 0.05) (Fig.  9A), Con-
versely, the expression of PIK3CA was observed to be 
significantly decreased in the AMI group in GSE59867 
dataset (P < 0.05) (Fig.  9B). To evaluate the diagnostic 
performance of TLR4 and PIK3CA, ROC analysis was 
performed using TLR4 and PIK3CA expression data 
from the GSE59867 dataset. The AUC of TLR4 was 0.583 
(95%CI = 0.498–0.668, P = 0.07) (Fig.  9C), which sug-
gests that it may not be a strong diagnostic biomarker 
for AMI. However, the AUC of PIK3CA was 0.734 
(95%CI = 0.671–0.791, P < 0.05) (Fig. 9D), indicating that 
it has good diagnostic potential for AMI. Meanwhile, we 
constructed a rat cardiomyocyte hypoxia model in vitro 
and used qRT-PCR to detect the relative expression level 
of PIK3CA. The result of qRT-PCR was consistent with 
the GSE59867 database: the expression level of PIK3CA 
in H9C2 hypoxic cardiomyocytes decreased significantly 
compared with the control group (P < 0.05, FC = 0.59) 
(Fig.  9E). These findings indicate that PIK3CA holds 
promise as a potential diagnostic biomarker for AMI.

LncRNA‑XIST and OIP5‑AS1/miR‑216a/PIK3CA axis
To identify the regulatory axis of PIK3CA biomarker in 
AMI, we employed a ceRNA network analysis approach. 
Since a single mRNA can interact with multiple miRNAs, 
we narrowed down the potential miRNAs by utilizing 
the GSE168149 dataset to ensure accuracy in our analy-
sis. After validation, miR-216a was identified as a poten-
tial upstream miRNA that could regulate the expression 
of the PIK3CA. We also found that XIST and OIP5-AS1 
were the top lncRNAs co-regulating miR-216a in the 
context of AMI, suggesting the existence of an intricate 
regulatory network in the pathogenesis of AMI (Fig. 9F). 
These novel findings shed light on the potential roles 
of PIK3CA biomarker in AMI and may provide new 
avenues for further research in this field. The schematic 
representation of our study’s workflow was depicted in 
Fig. 10.

Discussion
Despite significant progress in AMI treatment in recent 
years, existing therapies such as thrombolytic therapy, 
medication and interventional therapy still have limita-
tions. To address this, the potential roles of non-coding 

Table 2  The lncRNAs, miRNAs AND mRNAs in ceRNA network

The red font represents the lncRNA, miRNA and mRNA contained in final 
immune-related ceRNA axis in AMI. And PIK3CA was identified as a significant 
ferroptosis-related biomarker in AMI
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RNA in AMI have been extensively studied, particularly 
in relation to ferroptosis. Nevertheless, there remains 
a dearth of research regarding the specific regulatory 
mechanisms and immune infiltration landscapes associ-
ated with ferroptosis-related genes in AMI. Our study 
utilized an integration approach that combined ceRNA, 
LASSO, external dataset validation, and PPI network 
analysis to identify TLR4/PIK3CA as key DE-FRGs 
in AMI. And the ROC result showed PIK3CA was a 
robust and significant diagnostic biomarker in AMI. 
Furthermore, we analyzed immune infiltration using 
immucellAI.

In Table  5, we have presented two earlier studies that 
utilized bioinformatic analysis to identify crucial genes 
associated with AMI [40, 41]. Here, our study stands 
out by providing significant novel findings compared to 
two published papers. Firstly, we are the first to identify 
and explore the immune-related FRGs in the context of 
AMI. This represents a unique and previously unexplored 
aspect of AMI pathogenesis. Additionally, we have con-
structed and validated a novel ferroptosis-related ceRNA 
network involving XIST, OIP5-AS1, miR-216a, and 
PIK3CA. This ceRNA network differs from the previous 
studies, indicating a fresh perspective on the regulatory 
mechanisms underlying AMI.

Fig. 6  PPI network (A) The interaction network between proteins coded by DE-FRGs was composed of 42 nodes and 124 edges. Each node 
represents a protein, whereas each edge represents one protein–protein association. B-C Cluster plots represent the interaction network identified 
by MCODE. The red filled ellipses represent down-regulated genes, and blue filled ellipses represent up-regulated genes

Table 3  The hub genes identified by using five different 
algorithms of cytoHubba

Three hub genes were identified by cross-checking the results of five algorithms. 
And three hub genes were marked in red font
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Recent research has highlighted the role of Toll-like 
receptor 4 (TLR4) in regulating ferroptosis in myocardial 
tissue. Inhibition of TLR4 has been shown to alleviate 
heat stroke-induced cardiomyocyte injury through inhib-
iting ferroptosis [42], while TLR4 knock-down has been 
found to retard ferroptosis in rats with heart failure [43]. 
Although the precise mechanism through which TLR4 
regulates ferroptosis in AMI is not yet fully understood, it 
has been shown to be associated with ROS generation in 
AMI [44]. Therefore, it is possible that TLR4 can regulate 

ferroptosis in AMI. However, the ROC results for TLR4 
were not significant.

In addition, the gene PIK3CA, which encodes phos-
phatidylino-sitol 3-kinases (PI3ks) [45], has been 
implicated in the modulation of ferroptosis in various 
diseases, including melanoma [46], rheumatoid arthri-
tis [47], and lung injury [48], primarily via the PI3K/
AKT/mTOR signaling pathway. The regulatory mecha-
nism between PI3Ks and ferroptosis in AMI is not yet 
clear, but studies have shown that PI3Ks can affect 

Fig. 7  LASSO regression (A) Ten time cross-validation for tuning parameter selection in the LASSO model. B LASSO coefficient profiles. The 
method uses an λ penalty to shrink some regression coefficients to exactly zero. The binomial deviance curve was plotted versus -log (λ), where λ 
is the tuning parameter. C 3 set Venn diagram shows the integration strategy among ceRNA, PPI and LASSO regression. The red circle represents 
for ceRNA, the blue circle represents for PPI, the green circle represents for LASSO regression. As shown, there were 2 key DE-FRGs (TLR4, PIK3CA)

Table 4  More information about the 2 key DE-FRGs

Gene Full name Protein coded Role logFC P value

TLR4 toll like receptor 4 toll like receptor 4 Driver 0.3383 < 0.05

PIK3CA phosphatidylinositol 4,5-bisphosphate 
3-kinase catalytic subunit alpha

phosphatidylino-sitol 3-kinases Driver -0.2377 < 0.05
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Fig. 8  Correlation between TLR4/PIK3CA and 24 immune cells. A Correlation analysis between immune cell subpopulations and TLR4. B Correlation 
analysis between immune subpopulations and PIK3CA. The dot with a smaller size has a smaller p value. The X axis represents correlation coefficient

Fig. 9  Diagnostic performance of TLR4 and PIK3CA. A The violin plot represents the expression of TLR4 in the dataset GSE59867. The red mark 
represents AMI samples, the blue mark represents control samples. B The violin plot represents the expression of PIK3CA in the dataset GSE59867. 
The red mark represents AMI samples, the blue mark represents control samples. C Receiver operating characteristic (ROC) curve for TLR4. D ROC 
for PIK3CA. E The qRT-PCR results of PIK3CA in H9C2 rat cardiomyocytes. F XIST and OIP5-AS1/miR-216a/PIK3CA ceRNA network
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Fig. 10  The technical workflow of this article. The red word means down-regulation, and the green word means up-regulation
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myocardial apoptosis and autophagy by regulating 
Akt in hypoxic reoxygenated myocardial injury [49]. 
Activation of PI3Ks has also been found to alleviate 
mitochondrial apoptosis in AMI rats [50]. Therefore, 
PIK3CA could be the critical gene to regulate ferrop-
tosis in AMI, which could be a hot topic for future 
research.

To confirm that PIK3CA are key DE-FRGs, we 
employed GSE168149 dataset to validate its target 
miRNA, which we found to be miR-216a. miRNAs 
typically regulate their target genes by inhibiting 
the expression of mRNA or promoting its degrada-
tion [51], indicating a negative correlation between 
the two. Our results indicated that PIK3CA was 
down-regulated, indicating that miR-216a should be 
up-regulated. Although miR-216a was found to be 
up-regulated in GSE76591 dataset, there was limited 
literature on its role in AMI. To gain further insights, 
we also explored lncRNAs that bind to miR-216a and 
identified two consensus lncRNAs: XIST and OIP5-
AS1 (XIST, FC = 0.0001, P < 0.05; and OIP5-AS1, 
FC = 0.1923, P < 0.05). Wu et  al. confirmed that miR-
216a and OIP5-AS1 have direct binding sites through a 
dual-luciferase reporter assay [52]. One study suggests 
that XIST may promote myocardial fibrosis after AMI 
by sponging miR-155-5p [53], but there is limited lit-
erature on the roles of miR-216a and XIST in AMI. To 
validate our findings and gain a deeper understanding 
of the potential roles of miR-216a, XIST, and OIP5-
AS1 in the pathogenesis of acute myocardial infarc-
tion (AMI), additional research is required in the near 
future.

Ferroptosis has also been found to have a link with 
the immune system, as ferroptotic cells can identify 
and affect innate immune cells and adaptive immune 
cells, triggering a series of immune response [54]. Rec-
ognized as a critical signal on the surface of ferroptotic 

cells, 1-stearoyl-2–15-HpETE-sn-glycero-3-phosphati-
dylethanolamine (SAPE-OOH) has the capability to 
be acknowledged by the TLR2 receptor in macrophage 
[55]. And immune cells can also regulate ferroptosis, 
for example, LNC2 secreted by neutrophils can induce 
ferroptosis and accelerate tissue loss in lung can-
cer [56]. Claire’s study showed that M1 macrophages 
can exacerbate the expansion of infarct size, while M2 
macrophages are helpful for myocardial repair and 
inflammation to subside [57]. Nevertheless, our analy-
sis of immune cell infiltration using the GSE59867 
dataset revealed that AMI samples exhibited lower 
levels of macrophage infiltration compared to the con-
trol samples. This implies that the macrophages more 
significantly affected by AMI are likely to be of the M2 
type and that promoting infiltration of this type of mac-
rophage might be able to exert a myocardial protective 
effect in AMI. Nevertheless, the dataset did not specify 
any specific types of macrophages. Therefore, further 
studies on the types of macrophages and their involve-
ment in AMI could be a direction worthy of future 
investigation.

Although our study had a relatively large sample size, 
it is crucial to recognize the limitations of our approach. 
Firstly, as this was a retrospective analysis, there may 
been inherent biases in the data collection and analysis. 
Secondly, some profiles used in our analysis were from 
peripheral blood mononuclear cells, circulating endothe-
lial cells and monocyte, only the profiles in GSE76591 
dataset were from human heart tissue, which may not 
accurately reflect the gene expression in heart tissue. 
Therefore, further studies should be conducted to vali-
date our findings using heart tissue samples. Finally, addi-
tional studies are warranted to investigate the molecular 
mechanisms that govern the regulation of ferroptosis in 
acute myocardial infarction (AMI) and its interplay with 
the immune system.

Table 5  Several findings in this study exhibit substantial innovation in comparison to the published literature

Items Identification of Hub Genes in AMI Based on Bioinfomatics Analysis

Our findings PMID: 37115066 PMID: 35585822

Years 2023 2023 2023

Test set GSE59867 and GSE76591 GSE95368 GSE76387 and GSE161427

Species/tissue Human/heart tissue and peripheral blood Human/peripheral blood Mice/heart tissue

Key genes Key DE-FRG diagnostic biomarker: PIK3CA S100A9, MAPK3, MAPK1, MMP3, IL17A 
and HSP90AB1

Col5a1

Validation set GSE97320, GSE66360 and GSE168149 - -

Verification qRT-PCR qRT-PCR Western blotting

Mechanism LncRNA–miRNA–DE-FRG ceRNA network: XIST 
and OIP5-AS1/miR-216a/PIK3CA

- -
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Conclusion
In conclusion, our study provides valuable insights into 
the molecular mechanisms involved in AMI and presents 
a potential diagnostic biomarker for this condition. The 
XIST and OIP5-AS1/miR-216a/PIK3CA axes may regu-
late ferroptosis in AMI, which opens up a new avenue for 
the development of therapeutic strategies. Based on our 
findings, it is suggested that immune cells may have a sig-
nificant impact on the key DE-FRGs biomarker, indicat-
ing the importance of exploring the interplay between the 
immune system and ferroptosis in AMI. Our study estab-
lishes a strong foundation for future research endeavors 
focused on unraveling the molecular mechanisms that 
underlie acute myocardial infarction (AMI). Additionally, 
we propose a potential biomarker that holds promise for 
diagnosing this condition. More in-depth animal experi-
ments and clinical validation will further enhance the 
reliability of the present results.
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