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Abstract 

Objective Inflammation and immune cells are closely intertwined mechanisms that contribute to the progression 
of heart failure (HF). Nonetheless, there is a paucity of information regarding the distinct features of dysregulated 
immune cells and efficient diagnostic biomarkers linked with HF. This study aims to explore diagnostic biomarkers 
related to immune cells in HF to gain new insights into the underlying molecular mechanisms of HF and to provide 
novel perspectives for the detection and treatment of HF.

Method The CIBERSORT method was employed to quantify 22 types of immune cells in HF and normal subjects 
from publicly available GEO databases (GSE3586, GSE42955, GSE57338, and GSE79962). Machine learning meth-
ods were utilized to screen for important cell types. Single-cell RNA sequencing (GSE145154) was further utilized 
to identify important cell types and hub genes. WGCNA was employed to screen for immune cell-related genes 
and ultimately diagnostic models were constructed and evaluated. To validate these predictive results, blood samples 
were collected from 40 normal controls and 40 HF patients for RT-qPCR analysis. Lastly, key cell clusters were divided 
into high and low biomarker expression groups to identify transcription factors that may affect biomarkers.

Results The study found a noticeable difference in immune environment between HF and normal subjects. Mac-
rophages were identified as key immune cells by machine learning. Single-cell analysis further showed that mac-
rophages differed dramatically between HF and normal subjects. This study revealed the existence of five subsets 
of macrophages that have different differentiation states. Based on module genes most relevant to macrophages, 
macrophage differentiation-related genes (MDRGs), and DEGs in HF and normal subjects from GEO datasets, four 
genes (CD163, RNASE2, LYVE1, and VSIG4) were identified as valid diagnostic markers for HF. Ultimately, a diagnostic 
model containing two hub genes was constructed and then validated with a validation dataset and clinical samples. 
In addition, key transcription factors driving or maintaining the biomarkers expression programs were identified.

Conclusion The analytical results and diagnostic model of this study can assist clinicians in identifying high-risk indi-
viduals, thereby aiding in guiding treatment decisions for patients with HF.

Keywords Heart failure, Immune infiltration, Machine learning, Biomarker, Macrophage

Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

BMC Cardiovascular Disorders

†Shengnan Li, Tiantian Ge, and Xuan Xu contributed equally to this work.

*Correspondence:
Jiayi Tong
101007925@seu.edu.cn
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12872-023-03593-1&domain=pdf


Page 2 of 18Li et al. BMC Cardiovascular Disorders          (2023) 23:560 

Introduction
Heart failure (HF) is a multifaceted clinical syndrome 
that arises due to the progression of various cardiac dis-
eases. The structural and functional abnormalities of the 
heart can cause impaired cardiac filling or blood ejection, 
leading to HF [1]. HF has emerged as a significant global 
public health challenge, with high rates of hospitaliza-
tion and mortality, affecting approximately 24 million 
patients worldwide [2]. Ischemic cardiomyopathy (ICM) 
and dilated cardiomyopathy (DCM) are the most preva-
lent causes of HF. Therefore, it is crucial to take effec-
tive measures to prevent the onset of HF or explore new 
strategies to reduce its mortality rate.

Recent research has uncovered the role of leukocyte 
subclasses and various inflammatory mediators in HF 
and cardiovascular disease progression, with a particu-
lar focus on the interplay between immune cells such 
as macrophages [2, 3] and lymphocytes [4], and inflam-
mation [5]. In previous studies on leukocytes in cardiac 
disease, monocytes were mainly considered as homoge-
nous populations with a single function. However, recent 
research has broadened this description to encompass 
distinct populations monocytes, macrophages, T lym-
phocytes, B lymphocytes, and neutrophils, suggesting 
their different roles in cardiac disease. Studies have indi-
cated that T cells have been shown to have an impact on 
cardiac inflammation, hypertrophy, fibrosis, and dysfunc-
tion in nonischemic HF, and macrophages contribute 
greatly to cardiac fibrosis and diastolic dysfunction [6]. 
Recently, previously unrecognized temporal and spa-
tial roles of resident and nonresident macrophages in 
the progression of HF have been observed [7]. The mac-
rophage phenotype has the potential to act as a regula-
tor of inflammation in the progression of HF. Multiple 
regulators of macrophage activation have been identified 
and the regulation of macrophage phenotype has also 
been studied in the development of HF [8]. Despite these 
findings, the specific features of immune cells and effec-
tive molecular diagnostic biomarkers for HF remain 
unclear. A thorough comprehension of alterations in the 
immune microenvironment changes of diseased hearts 
could be a crucial step in revealing potential therapeutic 
approaches.

Over the past few years, high-throughput sequencing 
technologies like microarray, RNA-sequencing (RNA-
seq), and single-cell RNA-sequencing (scRNA-seq) 
have been utilized to explore immune cell distribution 
and identify effective diagnostic biomarkers via several 
gene expression profiles. Machine learning has played 
a crucial role in discovering vital cell types and diag-
nostic markers because of its efficiency in identifying 
relevant biomarker features, and classifying and validat-
ing biomarkers [9, 10]. However, there is still a lack of 

comprehensive characterization of immune cell compo-
nents and their influence on HF. This study used the CIB-
ERSORT method to calculate the quantity of 22 immune 
cells, identified essential cell types using machine learn-
ing algorithms, screened hub genes associated with key 
cell types, and validated hub genes in clinical patients. 
The objectives of our study were to explore the critical 
roles of immune cells and genes in the pathogenesis and 
advancement of HF to provide fresh insights for disease 
diagnosis, treatment, and understanding of immunity.

Methods
Data collection
The research flowchart is presented in Fig.  1. The gene 
expression profiles of HF in the training set and the vali-
dation set were obtained from GEO database (http:// 
www. ncbi. nlm. nih. gov/ geo). The training set included 
GSE3586 [11], GSE42955 [12], GSE57338 [13] and 
GSE79962 [14], and the validation set was GSE116250 
[15]. Single-cell data of HF was downloaded from 
GSE145154 [8].

Data pre‑processing
The R package GEOquery was utilized to down-
load GSE3586, GSE42955, GSE57338, GSE79962 and 
GSE116250. The gene expression matrix was converted 
according to the platform annotation file. The expression 
matrix of the array data was normalized using robust 
multichip average. If more than one probe corresponded 
to one gene, the average was taken. Subsequently, we 
combined the four datasets (GSE3586, GSE42955, 
GSE57338, GSE79962) into one training dataset and 
employed the “ComBat” in sva package to eliminate 
batch effects. We employed principal component analysis 
(PCA) for the visualization of the data and to detect any 
potential batch effects in the merged dataset.

Immune cell infiltration analysis
To study the disease immune microenvironment, we uti-
lized the R package “CIBERSORT” to calculate immune 
cell infiltration based on the standardized gene expres-
sion data. The results of immune cell infiltration were 
displayed using the ggplot2 and pheatmap packages. We 
performed Spearman analysis and visualized the results 
of immune cell infiltration correlation using the corrplot 
package. Furthermore, a range of methods was applied to 
assess immune cell infiltration as well, including “xCell”, 
“MCPcounter”, “ssGSEA” and “ABIS”.

Least absolute shrinkage and selection operator (LASSO) 
regression and random forest analysis
We constructed a LASSO prediction model utilizing 
the “cv. glmnet” function in the glmnet package. The 

http://www.ncbi.nlm.nih.gov/geo
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parameters (alpha = 1 and nlambda = 1000) were set in 
the analysis and lambda. Min was selected as the optimal 
lambda. Additionally, we utilized “RandomForest” func-
tion to conduct a random forest analysis [16]. To deter-
mine the importance of the indices, we calculated the 
percentage increases in the mean squared error (MSE) of 
each variable, with higher MSE% values indicating more 
important variables [17]. The key differential immune 
cells were then screened using the differential immune 
cells obtained from the random forest analysis and the 
LASSO regression.

Differentially expressed genes (DEGs) analysis
We conducted DEG analysis using the R package “limma” 
with a threshold of |log2 fold change (FC)| > 1 and false 

discovery rate (FDR) < 0.05 [18]. The volcano plot was 
displayed to visualize the results.

Functional enrichment analysis of DEGs
Using the ClusterProfiler package, we conducted GO 
functional enrichment analyses. The GO analysis 
included three main components: biological process, cel-
lular component, and molecular function. Statistical sig-
nificance was defined as adjusted p values less than 0.05.

Dimensionality reduction, clustering, visualization, and cell 
type recognition
Seurat was utilized to reprocess the data and annotate 
cell clusters. PCA was applied to reduce the dimensional-
ity of integrated data. Using the first 10 principal com-
ponents (PCs), we further reduced the integrated dataset 

Fig. 1 Research design flow chart
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to a two-dimensional space and visualized it by UMAP. 
According to the marker genes [8, 19], the 58,233 cells 
were annotated as Endocardium (Endo), Fibroblast (FB), 
Pericytes (PC), Smooth muscle cells (SM), Cardiomyo-
cytes (CM), Lymphatic endothelial cells (LEC), Myeloid, 
T cells, NK cells, and B cells.

AUCell gene set enrichment analysis
The AUCell package calculates AUCell scores to mark 
genes characteristic of each cell within macrophages and 
display interactive UMAP maps of the resulting scores. 
The gene sets “h.all.v7.1.symbols.gmt” were from the 
MSigDB database.

Cell‑cell interaction analysis
To enable a systematic analysis of cell signaling pathway 
communication, the “CellChat” package was adopted. We 
visualized the interaction between different cell subpopu-
lations through putative ligand-receptor pairs using the 
ggplot2 package and “Webr” package (version 0.1.5).

Analysis of single‑cell trajectories
Pseudotime trajectories of macrophages were explored by 
the Monocle (v2.22.0). The package employed machine 
learning techniques to arrange cells into trajectories with 
branch points based on a specific set of genes as input. 
The findings indicated that different clades corresponded 
to cellular populations with unique differentiation states. 
Differential analysis was performed between branches, 
and these macrophage marker genes located in different 
branch states were defined as macrophage differentia-
tion-related genes (MDRGs).

WGCNA
We analyzed the immune-related genes and gene mod-
ules through WGCNA (weighted gene coexpression 
network analysis) using the R package ‘WGCNA’ [20]. A 
suitable soft threshold of 10 was selected using the Pick 
Soft Threshold function, and 14 modules were estab-
lished through dynamic branch cutting with 0.25 as the 
merging threshold.

Patients and variables
The information of samples was collected from July 2022 
to April 2023. A total of 40 patients with HF and 40 con-
trols without HF in hospitalized patients during the same 
period were enrolled consecutively from Zhongda Hospi-
tal of Southeast University (Nanjing, Jiangsu, China). Dis-
ease was diagnosed based on a patient’s medical history, 
clinical performance, auxiliary examination, and case 
notes by specialized expert cardiologists. Patients were 
required to meet several criteria, including evidence of 
structural heart disease and manifestation of circulating 

congestion, age equal to or greater than 18 years old, New 
York Heart Association (NYHA) class equal to or greater 
than II, a minimum N-terminal pro-B-type natriuretic 
peptide (NT-proBNP) level of 400 pg/mL, and willing-
ness to provide written informed consent. In addition, 
HF can also be diagnosed when patients have significant 
signs and symptoms of HF described above, but NT-
proBNP levels are less than 400 pg/mL if their left ven-
tricular ejection fraction (LVEF) is less than 40%. Patients 
who had been hospitalized for HF within the previous 
12 months needed to have a NT-proBNP concentra-
tion of at least 600 pg/mL, while those with atrial fibril-
lation or atrial flutter required a level of at least 900 pg/
mL, regardless of their history of HF hospitalization. Sev-
eral exclusion criteria were applied in our study, which 
comprised recent worsening HF or other cardiovascu-
lar events or procedures, estimated glomerular filtration 
rate (eGFR) below 30 mL/min/1.73 m^2, acute or previ-
ous myocardial infarction, as well as moderate-to-severe 
liver and kidney dysfunction. Details of the patients are 
provided in Supplementary Table  1 and Supplementary 
Table  2. This study was approved by the Ethical Com-
mittee of Zhongda Hospital of Southeast University in 
Nanjing under the number 2021ZDSYLL111-P01. Writ-
ten informed consent was obtained from all patients, and 
the experiments were performed in accordance with the 
approved study protocol.

Quantitative real‑time polymerase chain reaction (qRT–
PCR)
Total RNA was extracted from peripheral blood of HF 
patients and healthy people utilizing the RNAprep Pure 
high efficiency total RNA extraction kit (TIANGEN, 
China). A cDNA synthesis kit (R323, Vazyme Biotech co., 
Ltd) was used to reverse transcribe the extracted RNA, 
and SYBR qPCR Master Mix (High Rox, Q341, Vazyme 
Biotech co., Ltd) was used for quantitative PCR of 2 diag-
nostic genes. The 2-ΔΔCt method was applied to esti-
mate the relative expression of the target genes. GAPDH 
was used as an internal control, and the primers are listed 
in Supplementary Table 3.

Regulatory analysis of transcription factors (TFs)
Unsupervised clustering analysis was used to catego-
rize macrophages into different patterns. Based on the 
consensus clustering algorithm, the number of clusters 
and their stability were determined [21]. The Consensus 
Cluster Plus package was applied to run the above steps 
and was repeated 1000 times to secure the stability of the 
results. To infer TF-target interactions in the cluster with 
different biomarker expressions, “SCENIC” [22] package 
was used. On the basis of co-expression network, SCE-
NIC recognized potential TF targets and identified direct 
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targets (regulatory factors) by TF motif enrichment anal-
ysis and calculated the activity of regulators on single cell. 
Scatter plots were used to illustrate the TFs with regula-
tion specificity scores. Additionally, the specificity scores 
of the top five TFs that only existed in the low expression 
group were further analyzed. Expression comparison 
between the groups was conducted to explore the TFs 
that may influence the expressions of biomarkers.

Statistical analysis
Statistical analyses were mainly performed using R (ver-
sion 4.1.2) and GraphPad Prism (version 8.0.1). Data 
were expressed as median (interquartile range) or mean 
(± standard error of mean, SEM). For comparisons of 
continuous variables between two groups, normally 
distributed variables were evaluated using independ-
ent Student’s t-tests, and non-normally distributed data 
were analyzed using Mann–Whitney U tests (the Wil-
coxon rank sum test). Kruskal-Wallis test was performed 
when analyzing more than two groups. The relationships 
between gene expression levels were evaluated on the 
basis of Spearman correlation coefficients. Receiver oper-
ating characteristic curves were plotted using the Surviv-
alROC package, and the area under the curve was used to 
evaluate the accuracy of the gene signature. If not speci-
fied, P < 0.05 was considered statistically significant.

Result
Immune cell infiltration in HF
We used four datasets, consisting of 116 cases of DCM 
and 118 cases of ICM, as the training dataset for our 
analysis of immune cell infiltration and DEG analy-
sis. The pertinent details of chosen datasets are pre-
sented in Table  1. After gene expression profiling and 
PCA, baseline batch differences were observed in the 
merged datasets. To increase analysis power, we applied 
the “ComBat” algorithm to correct for batch effect. By 
implementing the batch-correction methods, we were 
able to mitigate the batch effects to a considerable extent 
(Supplementary Fig.  1A). To estimate the abundance of 
infiltrating immune cells in HF and normal samples, 
we employed CIBERSORT on the corrected expression 

matrix (comprising four datasets). According to the 
results, the predominant immune cells that infiltrated 
in HF were macrophages, neutrophils,  CD8+ T cells, 
regulatory T cells (Tregs), and naive B cells (Fig. 2A). M2 
macrophages, neutrophils, and CD8 + T cells were sig-
nificantly different between HF and normal (Fig. 2B). We 
further delved into the correlation between immune cells 
in HF. The results indicated that in mast cells, NK cells, 
and CD4+ memory T cells, the proportion of activated 
population was negatively correlated with that of the cor-
responding resting population (Fig. 2C). Additionally, we 
found a negative correlation between the proportion of 
M1 macrophages and that of resting mast cells and acti-
vated NK cells, and a positive correlation between the 
proportion of M1 macrophages and that of Tregs and 
activated mast cells (Fig.  2C). We also used four addi-
tional methods (ABIS, MCPcounter, xCell, ssGSEA) to 
demonstrate the immune infiltration differences between 
HF and normal (Fig. 2D). Notably, differences in immune 
infiltration of monocytes, neutrophils and NK cells were 
found between HF and normal by four different algo-
rithms. In conclusion, immune environment seemed to 
be of great importance for the occurrence and progres-
sion of HF.

Identification of key immune cell types associated with HF
Subsequently, Wilcoxon test was selected to determine 
the differential abundance of immune cells between HF 
and normal samples in the merged dataset (Fig.  3A). 
We found 10 immune cell types that exhibited signifi-
cant differences between HF and normal. For instance, 
the proportion of M1 and M2 macrophages was signifi-
cantly different between HF and normal, and the propor-
tion of resting NK cells and native CD4 T cells in normal 
was lower than that in HF (Fig. 3A). To identify critical 
disease-associated immune cell types, six immune cell 
types associated with HF were identified using LASSO 
regression: B cell memory, CD4 naive T cells, resting NK 
cells, M1&M2 macrophages, and neutrophils (Fig. 3B, C). 
According to the random forest algorithm, the top four 
immune cells (Neutrophils, CD4 naive T cells, M1&M2 
macrophages) were identified as the key immune cell 
types based on increase in MSE (Fig.  3D). On the basis 
of the union of LASSO and random forest algorithms, 
four immune cell types were identified as closely associ-
ated with HF: neutrophils, CD4 naive T cells, M1 mac-
rophages, and M2 macrophages (Fig. 3B-D).

Major cell types in HF revealed by scRNA‑seq
In order to identify cell subsets expressing genes 
related to HF, we further collected scRNA-seq data 
of HF. After conducting quality control, we obtained 
58,233 high-quality single-cell data. Next, we carried 

Table 1 Characteristics of the five datasets

Datasets DCM ICM Normal Platform

GSE3586 13 0 15 GPL3050

GSE42955 12 12 5 GPL6244

GSE57338 82 95 136 GPL11532

GSE79962 9 11 11 GPL6244

GSE116250 37 13 14 GPL16791

GSE145154 2 2 1 GPL20795
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out normalization, unsupervised dimensionality reduc-
tion, and graph-based clustering on this dataset. We 
recognized a total of ten different cell subsets, includ-
ing T cells, NK cells, Myeloid, Endo, FB, PC, SM, B 
cells, CM, and LEC (Fig. 4A). Annotations of different 
cell types were determined using canonical markers as 
well as information gathered from previously published 

literature [8, 19], such as CD3D and CD3E for T cells, 
C1QC for myeloid, and MZB1 for B cells (Fig. 4B, D). To 
further explore the role of macrophages in HF, we then 
performed a separate clustering analysis of the mye-
loid cell population, which revealed 6 major cell types 
(macrophages, monocytes, granulocyte- macrophage 

Fig. 2 Immune cell infiltration in HF. (A) Bar plot showing the composition of 22 types of immune cells across samples. (B) Heatmap 
of the composition of 22 types of immune cells across samples, colored by normalized relative abundance. (C) Correlation heatmap of 22 types 
immune cells in HF samples. Red indicates positive correlation, and blue indicates negative correlation. (D) The immune infiltration differences 
between HF and normal by ABIS, xCell, MCPcounter and ssGSEA methods
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progenitors (GMP), dendritic cells 1&2 (DC1&2) and 
mast cells (Fig.  4C). We did not cluster neutrophils in 
this database because neutrophils are more sensitive 
with a half-life of only 15-20 h, which puts forward 
higher requirements for single cell sequencing of neu-
trophils. Therefore, macrophages were selected for fur-
ther analysis. Figure  4E showed significant differences 
in the proportion of macrophages in DCM, ICM, and 
normal subjects. Furthermore, we found that there 
was a considerable AUCell score in the activity of vari-
ous signaling pathways in macrophages of HF such as 
inflammatory response, apoptosis, p53 pathway, and 
TGF-β signaling (Fig. 4F). The above findings indicated 

that infiltration of macrophages maybe the important 
risk factor contributing to the process of HF.

Cell‑cell interaction analysis of macrophages
We performed cell communication analysis using Cell-
Chat to identify signal networks related to HF. Cell-cell 
interactions were compared in normal control (Fig.  5A) 
and HF samples (Fig.  5B), respectively. Interestingly, we 
found a denser interaction network in HF compared to 
normal samples. Supplementary Fig. 1B and 1C showed 
the overall communication conditions for all cell clusters 
in number and weight, respectively. To further inves-
tigate the potential influence of macrophages in HF, 
we explored the intercellular communication between 

Fig. 3 Identification of key immune cell types associated with HF. (A) Identifying the significantly different infiltrates of immune cells in HF 
and normal by Wilcoxon test. The upper and lower ends of boxes represent the interquartile range. Lines in the boxes represent median values, 
and dots show outliers. Statistical analysis was performed using Wilcoxon rank sum test. Asterisks indicate significance, *p < 0.05; **p < 0.01; 
***p < 0.001; ns, no statistical significance. LASSO regression (BC) and RandomForest (D) were conducted to analyze the different infiltrates 
of immune cells in HF, *p < 0.05; **p < 0.01
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Fig. 4 Major cell types in HF revealed by scRNA-seq. (A) Ten cell clusters were identified by marker gene annotation. (B) Heatmap of the expression 
level of marker genes from ten cell types. (C) Six cell clusters were obtained after classification of myeloid cells, and identified by marker gene 
annotation. (D) Heatmap of the expression level of marker genes from six cell types. (E) Bar plots showing the proportion of cell types in each 
sample. Statistical analysis was performed using independent Student’s t tests. Asterisks indicate significance, *p < 0.05; **p < 0.01; ***p < 0.001; ns, 
no statistical significance. (F) UMAP plots showing pathway activity for macrophages
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Fig. 5 Cell-cell interaction analysis of macrophages. Circos plots showing the interactions density between any two cell types in normal (A) 
and HF(B). (C) The crucial roles of macrophages in the communication network in normal (Left) and HF(Right). (D) The major signaling inputs 
and outputs among subsets. IL-16 (E) and CCL (F) signaling pathway network and expression between all celltypes. (G) Bubble plot showing 
the ligand-receptor interactions between macrophages and other cells. P-values are indicated by circle size. Communication proportion is indicated 
by color. The redder the color, the more important the interaction
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macrophages and other cell types. We found that mac-
rophages in HF had stronger intercellular communication 
with DC2 and less communication with SM than those 
in normal samples (Fig. 5C). CellChat detected 24 nota-
ble pathways between different clusters in HF, with the 
ANNEXIN signaling pathway and IL-16 signaling path-
way presenting the most salient outgoing and incoming 
signaling patterns in macrophages (Fig.  5D). Figure  5E 
and F indicated that macrophages expressed the major 
receiver in IL-16 signaling pathway and the influencer in 
CCL signaling pathway. The ligand–receptor interactions 
that mainly involved macrophages with other cells were 
identified (Fig. 5G).

Different differentiation characteristics of macrophages
To understand possible developmental connections in 
macrophages, we performed pseudo-time trajectory 
analysis. Monocle 2 constructed the single-cell trajecto-
ries in pseudotime, which consisted of two branch points 
(five branches and five states) (Fig. 6A, B). Through dif-
ferential analysis of differentiation states, we obtained 
Macrophage differentiation-related genes (MDRGs), and 
classified macrophages into three molecular subgroups 
(Fig.  6C). In addition, we analyzed the differences in 
the distribution of the different samples across the five 
states (Fig.  6D). The results showed that macrophages 
in normal subjects belonged predominantly to states 1 
and 5, and macrophages in HF belonged predominantly 
to states 3 and 4. This suggested that macrophages pro-
gressively entered states 3 and 4 during the progression 
of HF and bifurcated into different cellular fates after the 
branch point. Figure 6E and G showed the variations in 
differentially expressed genes when cells in branch point 
1 and branch point 2 performed different gene expression 
programs, respectively. Figure  6F indicated the altera-
tions in differentially expressed genes pertinent in branch 
point 1. These genes were classified into three categories, 
which were associated with response to lipopolysaccha-
ride, respiratory electron transport chain, and oxidative 
phosphorylation, respectively. Figure  6H showed the 
differentially expressed gene changes in branch point 2. 
These genes were classified into three categories involved 
in oxidative phosphorylation, positive regulation of cell 
activation, generation of precursor metabolites, and 
energy. Both branch points were related to multiple met-
abolic processes, such as respiratory electron transport 
chain and oxidative phosphorylation.

Construction and verification of the prognostic risk model
WGCNA was used to analyze the module genes most 
associated with macrophages. While constructing a co-
expression network, we discovered that the soft thresh-
olding power β was 10 when the fit index of scale-free 

topology reached 0.90 (Supplementary Fig.  1B). We 
determined nine modules using average linkage hierar-
chical clustering and the soft thresholding power (Sup-
plementary Figure1C) and found that the genes in the 
yellow and black modules were most significantly asso-
ciated with macrophages (Fig.  7A). Subsequently, we 
explored DEGs between HF and normal from the merged 
datasets (Fig.  7B). Based on macrophage-related genes 
in the black and yellow module, MDRGs, and DEGs 
between HF and normal samples, we found that the 
intersection of these results yielded 4 hub genes (VSIG4, 
CD163, RNASE2, LYVE1) (Fig.  7C), which were signifi-
cantly downregulated in HF than in normal samples. The 
results of GO analysis indicated that myeloid differen-
tiation was dramatically enriched by these macrophage-
related genes (Supplementary Fig.  2A). Figure  7D 
demonstrated the differences in the expression of VSIG4, 
CD163, RNASE2, and LYVE1 in different cells. Figure 7E 
indicated that the expression levels of four hub genes 
varied in the five states of macrophages. To evaluate the 
sensitivity and specificity of a candidate diagnostic gene, 
a ROC curve analysis was constructed and the area under 
the ROC curve (AUC) was assessed (Fig. 7F, G). We also 
used logistic regression to establish an HF diagnostic 
model containing two hub genes (CD163 and RNASE2). 
According to ROC analysis, these hub genes were con-
siderably sensitive and specific regarding diagnosing HF, 
with AUCs were 0.919 and 0.876 in the training and vali-
dation datasets, respectively (Fig. 7H). This supported the 
excellent diagnostic performance of the model.

Validation of potential biomarkers and their correlations 
with clinicopathological parameters
Tables  2 and 3 presented the clinical characteristics of 
participants in the CD163 group and RNASE2 group, 
respectively. The expression levels of the hub genes 
CD163 and RNASE2 were downregulated in HF com-
pared to normal by quantitative RT-qPCR experiment 
(Fig.  8A, B). ROC curves were generated to assess the 
capability of these genes to distinguish HF from normal, 
and the AUCs of CD163 and RNASE2 were 0.75 (95% 
CI 0.59–0.92) and 0.74 (95% CI 0.59–0.90), respectively, 
indicating that CD163 and RNASE2 may serve as novel 
biomarkers of HF (Fig.  8C, D). Notably, the expression 
of CD163 demonstrated a positive correlation with the 
estimated glomerular filtration rate(eGFR) (r  = 0.39, 
p = 0.012), while RNASE2 expression was negatively cor-
related with NT-proBNP (r = − 0.39, p = 0.011) (Fig. 8E, 
F). We further examined the correlation with other indi-
cators low-density lipoprotein cholesterol (LDL-C), car-
diac troponin I(cTnI), but did not find any significant 
correlation. We conducted an analysis of the relationships 
between the expression of these candidate genes and 
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clinical pathological features, including age, sex, coronary 
artery disease (CAD), hypertension, smoking, and dia-
betes mellitus (DM), in HF patients to better understand 

their role in the development of HF. CD163 expression 
was negatively correlated with the history of hyperten-
sion (p = 0.0107), while no significant correlations were 

Fig. 6 Different differentiation characteristics of macrophages. According to the pseudotime (A, B) of Macrophages, the cell population 
was divided into five different differentiation states. (C) Heatmap of top 30 differential genes. (D) Distribution of macrophages in different samples 
during the five stages. Heatmap showing the differentially expressed gene changes in branch point 1 (E) and branch point 2 (G). Go analysis 
of differentially expressed gene changes in branch point 1(F) and branch point 2 (H)
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Fig. 7 Construction and verification of the prognostic risk model. (A) Heatmap of the relationships between coexpression modules and immune 
cells. The number indicates the correlation coefficients between coexpression modules and immune cells, and the number in parentheses indicates 
the corresponding p values. (B) The volcano map of DEGs. Black dots represent genes that are not differentially expressed between HF and normal. 
Green indicates down-regulated genes, and red indicates up-regulated genes. (C) Venn diagram showing common genes of macrophage-related 
genes in the black and yellow module, MDRGs and DEGs between HF and normal samples. (D) Dot plot of the expression of VSIG4, CD163, RNASE2, 
and LYVE1 in all cells. (E) Gene expression of the four key genes in different differentiation states of macrophages. (F, G, H) Diagnostic effectiveness 
by ROC analysis in the training set and validation dataset. ROC curves for the all factors were constructed based on binary logistic regression
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found between CD163 expression and the other clinico-
pathological parameters (Fig. 8G). However, for RNASE2 
expression, no significant differences in any of the clinical 
pathological features mentioned above were observed. 
The above results indicated the expression of biomarkers 
can seldom be affected by clinicopathological features.

Biomarker‑specific transcription factors (TFs) and gene 
regulatory networks
Macrophage cell clusters were classified into 2 sub-
types based on the expression of CD163 and RNASE2 
(Fig.  9A, Supplementary Fig.  2B). Afterward, we plot-
ted the expressions of biomarkers of the two clusters 
identified through consensus clustering, which revealed 
that the expression levels of CD163 and RNASE2 were 

remarkably higher in cluster B. Based on the biomarker 
expression levels, we labeled cluster A and cluster B as 
the low and high biomarker expression groups, respec-
tively (Fig.  9B). Using SCENIC analysis, we also found 
that BCLAF1, GTF2F1, CREM, and ETV5 were specific 
motifs that had key roles in transcriptional regulation 
of the low group. HIF1A, MAF, and RFX2 motifs were 
activated in the high group (Fig. 9C). Moreover, we com-
pared the expression of the top five TFs in the low bio-
marker group between the two expression groups. The 
results indicated that the expression of BCLAF1, CREM, 
and ETV5 were notably different between the two groups 
and hence they were identified as TFs that potentially 
could influence the expression of these biomarkers 
(Fig. 9D).

Discussion
The clinical syndrome of HF can be caused by a vari-
ety of pathophysiologic changes, such as myocardial 
ischemia and infarction, pressure or volume overload, 
and responses to viral infections. Irrespective of the 
underlying etiology, excessive, uncontrolled, or dysregu-
lated inflammation can worsen myocardial injury, which 
in turn can contribute to the advancement of HF [23]. 
Immune cells are essential in the inflammatory process 
and are believed to modulate HF progression. During 
the past three decades, experimental and clinical studies 
have enhanced the comprehension of the involvement of 
inflammation and immune cells in the development of 
HF. Although there were initial setbacks in translating 
clinical treatments, targeting the interactions between 
inflammation and immune cells remains a promising 
and appealing direction for HF treatment [24]. Recently, 
machine learning has been leveraged for screening, diag-
nosis, and prognosis of diseases such as the prediction of 
cardiovascular events [25], detection of colorectal cancer 
[26], diagnosis of childhood B-cell acute lymphoblastic 
leukemia [27], and prediction of non-small cell lung can-
cer [28]. Currently, blood biomarkers such as BNP, NT-
proBNP, cTn, Galectin-3, Soluble ST2(sST2), and Growth 
differentiation factors-15(GDF-15) [29, 30] are used 
to predict and diagnose HF [31]. While BNP and NT-
proBNP are widely regarded as the gold standard in prog-
nostic diagnosis and stratification of HF, their sensitivity 
in the diagnosis of acute HF and Heart failure with pre-
served ejection fraction (HFpEF) may be low [32, 33], and 
their accuracy is influenced by various factors, including 
age, sex, ethnicity, genetic variants, and numerous car-
diac and non-cardiac conditions [34]. Novel biomarkers, 
such as sST2, GDF-15, and Galectin-3, show promise 
in evaluating prognosis beyond known natriuretic pep-
tides. However, their role in the clinical management 
of patients is not well defined, and further research is 

Table 2 Characteristics of the CD163 group participants

Data are mean ± SD or n (%). HF: Heart failure; DM: Diabetes mellitus; CAD: 
Coronary artery disease; NT-proBNP: N-terminal pro-B-type natriuretic peptide; 
LDL-C: Low-density lipoprotein cholesterol; cTnI: cardiac troponin I; eGFR: 
estimated glomerular filtration rate

Control HF

n 20 20

Sex (n male/n female) 10/10 10/10

Age(years) 65.8 ± 10.9 73.2 ± 12.7

Smoke 5(25) 0(0)

Hypertension 12(60) 17(85)

DM 4(20) 3(15)

CAD 10(50) 13(65)

NT-proBNP(ng/ml) 112.84 ± 126.24 9562.20 ± 11,652.42

LDL-C(mmol/L) 2.21 ± 0.72 2.34 ± 1.47

cTnI(ng/ml) 0.050 ± 0.002 0.118 ± 0.160

eGFR(mL/min/1.73m2) 91.95 ± 11.55 59.25 ± 32.00

Table 3 Characteristics of the RNASE2 group participants

Data are mean ± SD or n (%). HF: Heart failure; DM: Diabetes mellitus; CAD: 
Coronary artery disease; NT-proBNP: N-terminal pro-B-type natriuretic peptide; 
LDL-C: Low-density lipoprotein cholesterol; cTnI: cardiac troponin I; eGFR: 
estimated glomerular filtration rate

Control HF

n 20 20

Sex (n male/n female) 9/11 11/9

Age(years) 67.2 ± 10.9 73.9 ± 12.8

Smoke 5(25) 0(0)

Hypertension 11(55) 16(80)

DM 3(15) 1(5)

CAD 10(50) 13(65)

NT-proBNP(ng/ml) 126.11 ± 126.92 5080.48 ± 10,380.75

LDL-C(mmol/L) 2.17 ± 0.63 2.53 ± 1.32

cTnI(ng/ml) 0.006 ± 0.002 0.244 ± 0.253

eGFR(mL/min/1.73m2) 91.95 ± 14.69 59.25 ± 27.78
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Fig. 8 Validation of potential biomarkers and their correlations with clinicopathological parameters. The expression levels of (A) CD163 and (B) 
RNASE2 in normal vs. HF were analyzed by RT-qPCR. Statistical analysis was performed using the Wilcoxon rank sum test. (C, D) ROC curves 
of CD163 and RNASE2 for evaluating the diagnostic efficacy. (E) A Pearson correlation analysis of CD163 and eEGFR. (F) A Pearson correlation 
analysis of RNASE2 and NT-proBNP. (G) Correlation of CD163 and RNASE2 with clinicopathological characteristics. Statistical analysis was performed 
using the Wilcoxon rank sum test. Asterisks indicate significance, *p < 0.05; **p < 0.01; ***p < 0.001; ns, no statistical significance; HF: Heart failure; 
NT-proBNP: N-terminal pro-B-type natriuretic peptide; eGFR: estimated glomerular filtration rate; CAD: Coronary artery disease; DM: Diabetes 
mellitus
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necessary [35]. Regrettably, the prognosis of patients with 
HF remains poor as a result of insufficient early diagnosis 
and effective treatment options.

Here, we obtained bulk data on HF, utilized decon-
volution techniques, and analyzed the discrepancies in 
immune cells between HF and normal samples. The pro-
portion of immune cells was observed with a significant 
difference between HF and normal, such as macrophages, 
neutrophils, and mast cells, suggesting that dysregula-
tion of the immune microenvironment is the main rea-
son for the progression of HF. We further explored the 

key cluster (macrophages) in HF by bioinformatics 
analysis and machine learning. We distinguished dif-
ferences in macrophage composition between HF and 
normal through annotation and cluster analysis of sin-
gle-cell data, which may indirectly lead to differences in 
biological processes between HF and normal. Addition-
ally, we conducted differentiation trajectory analysis and 
pseudo-time analysis of macrophages to identify various 
differentiation states of macrophages. The macrophages 
in patients with HF exhibited five states and are related 
to multiple metabolic processes such as respiratory 

Fig. 9 Biomarker-specific transcription factors and gene regulatory networks. (A) Consensus matrix plots depicting consensus values on a white 
to blue color scale ordered by consensus clustering when k = 2. (B) The expression levels of biomarkers in the two clusters. Statistical analysis 
was performed using the Wilcoxon rank sum test. (C) Dotplot showing transcriptional factors enriched in different clusters. (D) The expression 
profile of key TFs in two clusters. Statistical analysis was performed using the Wilcoxon rank sum test. Asterisks indicate significance, *p < 0.05; 
**p < 0.01; ***p < 0.001; ns, no statistical significance
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electron transport chain and oxidative phosphorylation 
in the procession of differentiation. An imbalance of 
macrophage polarization between pro-inflammatory M1 
and anti-inflammatory M2 phenotypes can lead to exces-
sive inflammation and cardiac injury, ultimately resulting 
in HF. This dysregulation is associated with metabolic 
rearrangement between glycolysis and mitochondrial 
oxidative phosphorylation that influences macrophage 
polarization. Therefore, factors that impact macrophage 
metabolism have the potential to disrupt the balance 
between M1 and M2 phenotypes and aggravate inflam-
mation [36]. According to this evidence, our analysis 
findings are highly precise and credible, suggesting that 
advocate for the exploration of the underlying molecular 
mechanisms through the identification of macrophage 
energy metabolism.

Moreover, we further explored the interaction between 
macrophages and other cells. Through the analysis of 
cellular communication in our research, we have iden-
tified multiple reliable ligand-receptor pairs that have 
facilitated our understanding of the regulatory network 
within the immune microenvironment of HF. Mac-
rophages express major receptors of the IL-16 signaling 
pathway and influencers of the CCL signaling pathway, 
which aligns with previous research. CCL2 plays a cru-
cial role in adverse remodeling, fibrosis, and dysfunction 
in patients with both infarctive and non-infarctive HF 
[37, 38] and has been proposed as a potential therapeu-
tic target for conditions related to myocardial injury and 
adverse remodeling [39]. Previous studies also revealed 
that elevated expression of IL-16 within the heart leads to 
increased cardiac fibrosis and left ventricular myocardial 
stiffening, which is accompanied by infiltration of mac-
rophages [40].

Next, we extracted MDRGs that are essential in mac-
rophage differentiation trajectories. Based on mac-
rophage-related modular genes, MDRGs, and DEGs 
between HF and normal samples, we developed a risk 
model to predict prognosis that is composed of two 
hub genes (CD163 and RNASE2). CD163 is a recep-
tor expressed by monocytes/macrophages, and the shed 
soluble CD163(sCD163) reflects monocyte/macrophage 
activation, which plays a critical role in mediation of 
chronic inflammatory activation in HF [41, 42]. RNASE2 
is a cytotoxic protein secreted mainly by eosinophils and 
macrophages, and it has antiviral and chemotactic activi-
ties in vitro [43, 44]. Yang et al. showed that RNASE2 is 
capable of activating human dendritic cells, resulting 
in the production of multiple inflammatory cytokines, 
growth factors, chemokines, and soluble receptors. In 
addition, RNASE2 was found to be capable of inducing 
the maturation of dendritic cells [45]. By using clinical 
samples, we validated our results, which contributed to 

the reliability and accuracy of our findings. Utilizing RT-
qPCR to evaluate the expression levels of the two hub 
genes in blood samples, we determined that these genes 
have the potential to distinguish between HF and non-HF 
individuals. The study observed that CD163 and RNASE2 
were significantly downregulated in patients with HF 
when compared to the normal samples, indicating that 
these two genes may have a protective effect against the 
advancement of HF. Together, CD163 and RNASE2 were 
considered as candidate biomarkers of HF. Moreover, our 
results indicated a strong association between CD163 and 
hypertension, consistent with results from previous stud-
ies [46]. A prior study provided evidence that the level of 
CD163 expressed on monocytes in individuals with coro-
nary heart disease exhibited a positive correlation with 
low-density lipoprotein cholesterol [47]. However, this 
difference was not shown in our experiment, probably 
due to the fact that our sample size was relatively small. 
In a previous study, it was demonstrated that sCD163 
levels in plasma were indicative of the complete pool of 
membrane-bound CD163 [48]. Conversely, another study 
found that there was a negative relationship between 
the expression of CD163 on the surface of monocytes 
and the concentration of sCD163 [49]. The inconsist-
ent outcomes may be attributed to differences in the 
patient cohorts investigated. The former study was con-
ducted in infected hematologic patients, which showed 
elevated sCD163 due to increased CD163-expressing 
macrophages or upregulation of CD163 gene expression 
by pro-inflammatory mediators, whereas the other study 
was conducted in randomized subjects. In our inves-
tigation, the expression level of sCD163 in peripheral 
blood may be consistent with CD163 in myocardial tis-
sue. Moreover, the expression level of CD163 was found 
to be positively correlated with eGFR in patients with 
HF. Patients with ANCA-associated glomerulonephritis 
were also found to exhibit significantly raised levels of 
U-sCD163 [50]. Our findings showed a negative correla-
tion between NT-proBNP and RNASE2. This suggested 
that RNASE2 has the potential to be used in combination 
with NT-proBNP for the diagnosis of HF. In addition, we 
analyzed the diagnostic values of both hub genes in our 
cohort using ROC curve analysis. Both genes had reliable 
diagnostic values, exhibiting remarkable specificity and 
sensitivity. Taken together, the evidence presented above 
suggests that CD163 and RNASE2 can serve as distinct 
factors and diagnostic indicators for HF.

We acknowledge several limitations in this study. First, 
the trial involved a limited sample size and restricted 
patient inclusion for clinical characteristics, which might 
result in biased outcomes. Second, multiple datasets with 
different control numbers would affect the interpretation 
of the findings. Next, we plan to continue collecting cases 
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for a multicenter, large-sample study to confirm our find-
ings. Further research is required to investigate the role 
of CD163 and RNASE2 in the development of HF in vivo 
and in vitro. Despite these limitations, our study provides 
valuable insights into the specific macrophage-associ-
ated biomarkers that could enable the rapid diagnosis of 
patients with HF. These findings offer novel insights into 
the prevention and treatment of HF and could potentially 
serve as a basis for future investigations.

Conclusion
The key role of macrophages in HF was screened by 
machine learning and a logistic regression diagnostic 
model based on macrophage-related genes was con-
structed. The diagnosis model was evaluated and con-
firmed by bioinformatic analysis and experiments, which 
may contribute to a new perspective for the prevention 
and treatment of HF and provide a basis for follow-up 
research.
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