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Abstract
Background and Aims Epidemiological studies show that high circulating cystatin C is associated with risk 
of cardiovascular disease (CVD), independent of creatinine-based renal function measurements. However, the 
relationship between serum cystatin C level and coronary atherosclerotic plaque burden is limited. We aimed to 
evaluate the relationship between circulating cystatin C and coronary atherosclerotic plaque burden.

Methods This study was a cross-sectional study based on China community population. Measurements of plaque 
burden were based on the segment-involvement score (SIS) and segment stenosis score (SSS), which derived from 
the Coronary Artery Tree Model Depicting Coronary Artery Plaque Scores. Logistic regression model was used to 
demonstrate the association between cystatin C level and coronary artery plaque burden. Mendelian randomization 
(MR) analyses were conducted to assess the causal effect of cystatin C level on coronary atherosclerosis risk.

Results A total of 3,043 objects were included in the present study. The odds risks (OR) of severe plaque burden in 
the highest serum cystatin C levels (OR: 2.50; Cl:1.59–3.91; P < 0.001) and medium-level cystatin C levels (OR: 1.86; 95% 
Cl: 1.21–2.88; P = 0.005) were significantly higher after fulled adjusted confounders compared with the lowest levels 
of serum cystatin C by SSS. The MR analysis showed that genetic predicted cystatin C levels was associated with an 
increased risk of coronary atherosclerosis (OR, 1.004; 95% CI, 1.002–1.006, P < 0.001) .

Conclusion Elevated serum cystatin C levels were associated with coronary atherosclerotic plaque burden. Cystatin 
C levels had a causal effect on an increased risk of coronary atherosclerosis at the genetic level.

What is already known on this topic? Coronary artery disease is currently the most common cardiovascular 
disease and the leading global cause of mortality. Previous studies reported that higher serum cystatin C levels were 
associated with an increased risk for future cardiovascular events, independent of the normal creatinine levels or 
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Introduction
Due to the aging global population, coronary artery dis-
ease (CAD) is currently the most common cardiovascular 
disease worldwide [1]. It has been found to be the leading 
cause of death in both developed and developing coun-
tries [2]. Atherosclerotic plaque is the essential patholog-
ical feature of CAD and is closely associated with future 
cardiovascular events [3]. The extent of atherosclerotic 
plaque is often quantified as plaque burden, which is the 
percentage of plaque area within the entire vessel area 
[4]. Risk of adverse events from coronary artery disease 
(CAD) starts to rise with the presence of mild atheroscle-
rotic disease and gradually increases with the extent of 
atherosclerotic plaque burden [5]. Atherosclerotic plaque 
burden could be directly visualized and quantified nonin-
vasively by coronary computed tomography angiography 
[6]. Recently, Palanca A et al. found that plaque burden 
of subclinical atherosclerosis is the strongest predictor of 
future cardiovascular events in diabetic individuals with 
chronic kidney disease [7]. Accordingly, measurements 
of plaque burden and composition determined by coro-
nary computed tomography angiography (CTA) have 
been proven to predict future cardiovascular events well 
[8–10].

Cystatin C is a important cysteine protease inhibi-
tor which has essential function in maintaining vascu-
lar function and structure especially through regulate 
cathepsins S and cathepsins K [11]. Previous studies 
reported that higher serum cystatin C levels were asso-
ciated with an increased risk for future cardiovascu-
lar events, independent of the normal creatinine levels 
or estimated glomerular filtration rate (eGFR) values 
[12–14], while, the exact mechanism remains unclear. 
Subclinical coronary atherosclerotic plaque burden is 
important pathological processes of CAD, whether the 
aggravation of coronary plaque burden is accompanied 
by the increase of serum cystatin C level is a topic worth 
exploring. However, there were no studies reported the 
association between serum cystatin C level and coronary 
atherosclerotic plaque burden. Given that it is difficult 

to evaluate the causality of serum cystatin C level on 
coronary atherosclerosis for the potential confounding 
interference that exist in observational studies. We used 
Mendelian Randomization (MR) analysis to evaluate cau-
sality of serum cystatin C level on coronary atheroscle-
rosis by using genetic variants as instrumental variables 
for risk factors. Therefore, the purpose of this study is 
to investigate the association between serum cystatin C 
levels and coronary atherosclerotic plaque burden, and 
provide more references for the prevention of coronary 
atherosclerotic heart disease in the future.

Methods
Study design and clinical data
The study data were derived from the PRECISE study 
(NCT03178448) and the protocol has been reported in 
previous study [15]. We extracted the general charac-
teristics (e.g., smoking, drinking, hypertension, diabe-
tes, body mass index, waistline, hipline, blood pressure, 
etc.) and laboratory data (plasma levels of cystatin C, 
total cholesterol (TC), triglyceride (TG), low-density 
lipoprotein cholesterol (LDL-C), high-density lipopro-
tein cholesterol (HDL-C), creatinine, uric acid (UA), 
urea nitrogen, lipoprotein(a) (LP(a)), homocysteine, gly-
cosylated hemoglobin) of participants. Hypertension 
is defined as either systolic blood pressure (SBP) ≥ 140 
mmHg or diastolic blood pressure (DBP) ≥ 90 mmHg at 
least three times, self-reported hypertension previously 
diagnosed by a physician or on a prescription of antihy-
pertensive chemotherapy. Diabetes is defined as a self-
reported diabetes previously diagnosed by a physician 
or current use of anti-diabetic agents or fasting plasma 
glucose ≥ 7.0 mmol/L or 2-hour postload glucose ≥ 11.1 
mmol/L or HbA1c ≥ 6.5% [13]. Body Mass Index (BMI) is 
calculated as weight (kg) divided by height2 (m2).

Coronary computed tomography angiography 
examination
Participants with a potential risk of using contrast media 
were excluded, and the remained participants were 

estimated glomerular filtration rate (eGFR) values. The presence of high-risk coronary atherosclerotic plaque burden 
is associated with increased risk of cardiovascular events. However, the association between serum cystatin C and 
coronary atherosclerotic plaque burden is not very clear.

What this study adds? Our study demonstrated that the elevated serum cystatin C levels were associated with 
coronary atherosclerotic plaque burden. In addition, we found that serum cystatin C levels had a causal effect on an 
increased risk of coronary atherosclerosis at the genetic level.

How this study might affect research, practice or policy? Current research finds that serum cystatin C levels were 
associated with coronary atherosclerosis. The metabolic pathway of cystatin C could be a target for new therapies 
against CAD.

Keywords Cystatin C, Coronary artery disease, Plaque burden, Population-based study, Genetics, Mendelian 
randomization
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requested to underwent CTA for major arteries of the 
body (coronary artery, subclavian artery, renal and ilio-
femoral arteries). All scans and readings were performed 
by clinicians blinded to the trial. Plaque burden was 
defined as the sum of calcified plaque burden and non-
calcified plaque burden. Measurements of plaque bur-
den were based on the segment-involvement score (SIS) 
and segment stenosis score (SSS), which derived from 
the Coronary Artery Tree Model Depicting Coronary 
Artery Plaque Scores [16]. The segment-involvement 
score divided the coronary arteries into 16 segments [16]. 
Given that some blood vessels were too small and had 
deviation in image recognition in actual research, we only 
included nine main segments for final research. The nine 
main segments of coronary artery include left main, left 
anterior descending, diagonal branch, circumflex, obtuse 
marginal, septal branch, right coronary artery, posterial 
descending branch, posterior branches of left ventricu-
lar. The segment stenosis scores were used as a measure 
of overall coronary artery plaque extent. Each coronary 
segment was graded as having no plaque to severe plaque 
(i.e., scores from 0 to 3) based on the inner diameter of 
coronary artery. Then the extent scores of all nine indi-
vidual segments were summed to yield a total score 
ranging from 0 to 27. Previous studies reported that the 
significant coronary atherosclerotic burden which based 
on 16 segments of Coronary Artery Tree Model, was 
defined using prognostically validated cutoffs: SIS > 4 
[17], or SSS > 5 [18]. Given that there were nine indi-
vidual segments in our study, thus, we regarded SSS ≥ 4 
were represented severe coronary artery plaque burden, 
SSS ≥ 1 but < 4 were represent non-severe disorder. Two 
raters reconstructed and analyzed the CTA data at a car-
diac image-viewing workstation.

Statistical analysis
Continuous variables that exhibited a normal distribution 
were documented as the mean ± standard deviation (SD). 
Otherwise, they were documented as medians with upper 
and lower quartiles. Categorical variables were docu-
mented as frequencies with percentages. Group compari-
sons were pooled using Chi-square, 1-way ANOVA, and 
Kruskal-WallisH tests. For each clinical outcome mea-
sures, three multivariate logistic regression models were 
constructed on the basis of cystatin C group inclusion 
according to tertiles. The first tertile was treated as the 
reference group. In the model I, covariates were adjusted 
for age, gender, BMI, diabetes, smoking, waistline and 
hipline. In the model II, we adjusted for creatinine, UA, 
homocysteine, cholesterol, LDL-C, HDL-C, triglyceride, 
HbA1c. In the model III, we further adjusted for covari-
ates age, gender, BMI, diabetes, smoking, hypertension, 
creatinine, homocysteine, UA, LDL-C, HbA1c. Addi-
tionally, we performed a subgroup analysis for further 

investigating the association between serum cystatin C 
levels and coronary atherosclerotic plaque burden based 
on the model III. All tests were 2-tailed tests, and P ≤ 0.05 
was considered statistically significant. Statistical analy-
ses were performed using R versions 3.4.2 (R Foundation 
for Statistical Computing, Vienna, Austria).

Data sources of mendelian randomization
Summary level data on the associations of cystatin C was 
obtained from recently published a large-scale genome-
wide association studies (GWAS) [33]. We selected 
summary statistics for serum cystatin C. A total of 358 
SNPs were genome-wide significant with cystatin C ( 
p < 5 × 10− 8) (Supplementary material). The summary sta-
tistics data for coronary atherosclerosis was derived from 
the GWAS database (https://gwas.mrcieu.ac.uk/datasets/
ukb-d-I9_CORATHER/;ICD:“ukb-d-I9-CORATHER”). 
Studies contributing data to these GWAS meta-analyses 
had received ethical approval from relevant institutional 
review boards. In the present study, we only made use of 
the summarized data from these studies; hence, no addi-
tional ethics approval was required.

Statistical analysis
The primary MR analysis was performed using the fixed 
effects inverse variance weighted (IVW) and random 
effects inverse variance weighted (IVW) methods. As the 
presence of horizontal pleiotropy in IVW estimates, MR-
Egger and weighted median were also conducted to test 
the robustness of the results. In the sensitivity analysis, 
the heterogeneity and pleiotropy of individual SNPs were 
evaluated using IVW methods with Cochran’s Q statistics 
and MR Egger intercept, respectively. Also, a leave-one-
out analysis was performed to evaluate the robustness 
of MR analysis results through any outlier SNP. All sta-
tistical analyses were undertaken using the “TwoSam-
pleMR” package in R version 3.4.2 (R Foundation for 
Statistical Computing, Vienna, Austria) and a two-tailed 
p value < 0.05 was considered statistically significant.

Results
Characteristics of the study population
A total of 3,043 participants (1,413 males and 1,630 
females) with an average age of 61.1 ± 7.5 years old were 
included in our study. The mean SIS and SSS was high-
est in tertiles 3 and lowest in tertiles 1 (P < 0.001). Athero-
sclerotic plaques appeared in 1186 (38.97%) individuals. 
Among the objects, 900 objects had mild-to-moderate 
plaque burden with the prevalence of 29.6%, and 286 
objects had severe plaque burden with the prevalence 
of 9.4% according to the SSS. The prevalence of severe 
plaque burden according to SSS among each cystatin 
C group was 3.4% (33/979), 8.4% (85/1016), and 16% 
(168/1048), respectively. Mean age, BMI, waist and 

https://gwas.mrcieu.ac.uk/datasets/ukb-d-I9_CORATHER/;ICD:?ukb-d-I9-CORATHER
https://gwas.mrcieu.ac.uk/datasets/ukb-d-I9_CORATHER/;ICD:?ukb-d-I9-CORATHER
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hip circumference, SBP, prevalence of men, hyperten-
sion, diabetes, dyslipidemia, stroke, smoking, creatinine, 
UA, BUN and Triglyceride significantly increased with 
serum cystatin C tertiles. By contrast, total cholesterol, 

and HDL cholesterol were significantly decreased with 
serum cystatin C tertiles. However, there were no signifi-
cant difference in ankle brachial index between the vari-
ous group. More information about the study population 
characteristics is shown in Table 1.

The association of serum cystatin C levels with coronary 
atherosclerotic plaque burden
Serum cystatin C levels had a positive association with 
coronary atherosclerotic plaque burden. In the model I, 
after adjusted for the general information (age, gender, 
BMI, Diabetes, Smoking, waistline, hipline) of partici-
pants, we have not observed the significant association 
between serum cystatin C tertiles and mild-to-moder-
ate coronary atherosclerotic plaque burden (cystatin C 
tertiles 3 vs. cystatin C tertiles 1: OR: 1.25, 0.99–1.57; 
P = 0.056), however, for the severe coronary atheroscle-
rotic plaque burden (SSS ≥ 4), the risk of severe coronary 
atherosclerotic plaque burden (SSS ≥ 4) was significantly 
higher with increasing serum cystatin C tertiles than with 
the first serum cystatin C tertiles (cystatin C tertiles 2 vs. 
cystatin C tertiles 1: OR: 2.01, 1.30–3.08; P = 0.002; cys-
tatin C tertiles 3 vs. cystatin C tertiles 1: OR: 2.95, 1.92–
4.51; P < 0.001). In the model II, we only adjusted for the 
risk factors of laboratory examination (Creatinine, UA, 
Cholesterol, LDL-C, HDL-C, Triglyceride, homocyste-
ine, HbA1c). Both mild-to-moderate and severe coronary 
atherosclerotic plaque burden were all significant associ-
ated with increasing serum cystatin C tertiles (P < 0.001). 
In the model III, after full adjustment for cardiovascular 
disease risk factors (age, gender, BMI, Diabetes, Hyper-
tension, Creatinine, UA, LDL-C, HbA1c), the risk of 
severe coronary atherosclerotic plaque burden gradually 
increased in the second (OR: 1.86; 95% CI: 1.21–2.88; 
P < 0.001), and third serum cystatin C tertiles (OR: 2.50; 
95% CI: 1.59–3.01; P < 0.001) compared with the first 
serum cystatin C tertiles (As shown in Table 2).

Subgroup analyses
We observed cystatin C level was associated with severe 
plaque burden without significant interaction effect with 
sex, and diabetes. However, among the objects with-
out hypertension, BMI < 24, renal disorder, and hyper-
uricemia, there were still lack of evidences showed that 
cystatin C level was significantly associated with severe 
plaque burden. Age has a special effect on cystatin C. 
It was observed that cystatin C was significantly asso-
ciated with severe plaque burden in 55–65 years old 
objects, while only higher levels of cystatin C (Q3) was 
significantly associated with severe plaque burden in 
the objects who over 65 years old. Nevertheless, there 
was no significant association between serum cystatin C 
level and severe plaque burden in the objects who under 
55 years old. The subgroup analyses results about serum 

Table 1 Baseline Characteristics of Participants
variable Q1 (n = 979)

(0.52–0.85) 
mg/dL

Q2 (n = 1016)
(0.86–0.99) 
mg/dL

Q3 
(n = 1048)
(1.00-7.35) 
mg/dL

P value

Age (years 
old)

58.2 ± 5.5 60.9 ± 6.4 64.3 ± 6.6 < 0.001

Man, n (%) 291(29.7) 469(46.2) 653(62.3) < 0.001
BMI (kg/m2) 23.5 ± 3.0 23.7 ± 3.0 24.1 ± 3.1 < 0.001
SBP (mmHg) 127.5 ± 16.1 128.9 ± 16.3 131.2 ± 16.4 < 0.001
DBP (mmHg) 74.9 ± 8.9 75.1 ± 9.2 75.5 ± 9.0 0.3469
Hyperten-
sion (%)

325(33.2) 422(41.5) 557(53.1) < 0.001

Diabetes (%) 186(19.0) 202(19.9) 270(25.8) 0.0003
dyslipidemia 378(38.6) 412(40.6) 479(45.7) 0.0035
Stroke 14(1.4) 23(2.3) 49(4.7) < 0.001
renal_dis-
order

107(10.9) 121(11.9) 149(14.2) 0.0684

Smoking (%) 102(10.4) 212(20.9) 311(29.7) < 0.001
Drinking (%) 171(17.5) 203(20.0) 194(18.5) 0.3500
waistline 84.8 ± 8.7 86.5 ± 8.6 88.7 ± 9.0 < 0.001
hipline 94.4 ± 6.3 95.0 ± 6.1 95.8 ± 6.4 < 0.001
Creatinine 
(umol/L)

57.9 ± 10.1 65.0 ± 11.2 76.4 ± 20.5 < 0.001

UA (umol/L) 303.0 ± 71.4 336.4 ± 75.0 378.0 ± 91.4 < 0.001
BUN 
(mmol/L)

5.5 ± 1.4 5.8 ± 1.4 6.2 ± 1.5 < 0.001

Cholesterol 
(mmol/L)

5.4 ± 1.0 5.3 ± 1.0 5.1 ± 1.0 < 0.001

LDL-C 
(mmol/L)

2.8 ± 0.8 2.8 ± 0.8 2.7 ± 0.8 < 0.001

HDL-C 
(mmol/L)

1.5 ± 0.3 1.4 ± 0.3 1.3 ± 0.3 < 0.001

LP(a) (mg/L) 60.0(32.0-146.0) 63.0(31.0-145.5) 64.0(33.0-
159.0)

0.4178

Triglyceride 
(mmol/L)

1.7 ± 1.3 1.8 ± 1.2 1.9 ± 1.2 0.0002

Cys (mg/L) 0.8 ± 0.1 0.9 ± 0.0 1.2 ± 0.2 < 0.001
HbA1c 5.9 ± 0.9 5.9 ± 0.9 6.0 ± 1.0 0.0001
glu (mmol/L) 6.0 ± 1.6 5.9 ± 1.4 6.0 ± 1.7 0.6705
abil 1.1 ± 0.1 1.1 ± 0.1 1.1 ± 0.1 0.9851
abir 1.1 ± 0.1 1.1 ± 0.1 1.1 ± 0.4 0.9111
SIS (1–3) 299(30.5) 405(39.9) 503(48.0) < 0.001
SIS (≥ 4) 15(1.5) 55(5.4) 88(8.4) < 0.001
SSS (1–3) 238(24.3) 307(30.2) 355(33.9) < 0.001
SSS (≥ 4) 33(3.4) 85(8.4) 168(16.0) < 0.001
BMI: body mass index; SBP: systolic blood pressure; DBP: diastolic blood 
pressure; UA: uric acid; BUN: blood urea nitrogen; LDL: low density lipoprotein-
Cholesterol; HDL: high density lipoprotein-Cholesterol; LP(a): lipoprotein(a); 
Cys: homocysteine; HbA1c: glycosylated hemoglobin; abil: ankle brachial index 
of left leg; abir: ankle brachial index of right leg; SIS: segment-involvement 
score; SSS: segment stenosis score

Quartiles of cystatin C, mg/dL
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cystatin C level and severe plaque burden as shown in 
Table 3.

Results of mendelian randomization study
A total of 358 SNPs were genome-wide significant with 
serum cystatin C level. Ultimately, 358 SNPs as the 
instruments were included in the two-sample MR anal-
ysis after matching the coronary atherosclerosis data. 
Five MR analysis methods, inverse-variance weighted 
fixed-effect, inverse-variance weighted random-effect, 
simple median, weighted median, and MR-Egger (boot-
strap) were performed to analyze the final results, as 

shown in Fig. 1. Both the fixed-effect and random-effect 
IVW models showed that serum cystatin C level was 
associated with an increased risk of coronary athero-
sclerosis (OR, 1.004; 95% CI, 1.002–1.006, P < 0.001; 
OR, 1.004; 95% CI, 1.002–1.006, P < 0.001), as shown in 
Fig. 2. Similar results was also observed using MR Egger 
(bootstrap) method (OR, 1.003; 95% CI, 1.001–1.006, 
P = 0.002), as shown in Table  4. The heterogeneity may 
exist in the IVW analysis (Q = 769.697, P < 0.001) and 
MR-Egger analysis (Q = 765.367, P < 0.001). MR-Egger 
regression showed no evidence of directional pleiotro-
pic effect across the genetic variants (intercept, 0.0001; 

Table 2 logistic regression model analysis for research the association between Cystatin C and coronary atherosclerotic disorder
Variable Crude model Model I Model II Model III
SSS(mild-to-moderate) OR (95% CI) P value OR (95% CI) P value OR (95% CI) P value OR (95% CI) P value
Q1 (0.52–0.85) 1.0 (ref ) 1.0 (ref ) 1.0 (ref ) 1.0 (ref )
Q2 (0.86–0.99) 1.46 (1.20–1.79) < 0.001 1.19 (0.96–1.46) 0.114 1.40 (1.14–1.72) 0.002 1.20 (0.97–1.48) 0.103
Q3 (1.00-7.35) 2.01 (1.65–2.46) < 0.001 1.25 (0.99–1.57) 0.056 1.80 (1.42–2.28) < 0.001 1.31 (1.01–1.69) 0.042
SSS (severe) OR (95% CI) P value OR (95% CI) P value OR (95% CI) P value OR (95% CI) P value
Q1 (0.52–0.85) 1.0 (ref ) 1.0 (ref ) 1.0 (ref ) 1.0 (ref )
Q2 (0.86–0.99) 2.92 (1.93–4.43) < 0.001 2.01 (1.30–3.08) 0.002 2.53 (1.65–3.86) < 0.001 1.86 (1.21–2.88) 0.005
Q3 (1.00-7.35) 6.87 (4.65–10.14) < 0.001 2.95 (1.92–4.51) < 0.001 4.81 (3.14–7.35) < 0.001 2.50 (1.59–3.91) < 0.001
OR: Odds ratio; CI: confidence interval. Model was derived from logistic regression model. Crude model adjusted for: none

Model I adjusted for: age, gender, BMI, Diabetes, Smoking, waistline, hipline

Model II adjusted for: Creatinine, UA, Cholesterol, LDL-C, HDL-C, Triglyceride, HbA1c, homocysteine

Model III adjusted for: age, gender, BMI, Diabetes, Smoking, Hypertension, homocysteine, Creatinine, UA, LDL-C, HbA1c.

SIS: segment-involvement score; SSS: segment stenosis score

Table 3 Subgroup analysis of the relationship between cystatin C and coronary atherosclerotic disorder
Characteristic Group 1

(Ref)
Group 2 Group 3
OR(95%CI) P value OR(95%CI) P value

Age (years old)
< 55 Ref SSS (sev) 2.99 (0.97–9.18) 0.056 2.52 (0.60-10.56) 0.205
55–65 Ref SSS (sev) 2.35 (1.26–4.39) 0.007 4.35 (2.18–8.71) < 0.001
≥ 65 Ref SSS (sev) 1.62 (0.76–3.45) 0.209 2.48 (1.81–5.20) 0.016
Gender
Male Ref SSS (sev) 2.11 (1.09–4.09) 0.027 2.06 (1.03–4.09) 0.040
Female Ref SSS (sev) 1.54 (0.84–2.80) 0.162 3.45 (1.86–6.37) < 0.001
Diabetes
Yes Ref SSS (sev) 3.61 (1.48–8.81) 0.005 4.88 (1.94–12.25) < 0.001
NO Ref SSS (sev) 1.44 (0.87–2.40) 0.157 2.14 (1.24–3.69) 0.007
Hypertension
Yes Ref SSS (sev) 1.76 (1.01–3.07) 0.048 2.85 (1.62-5.00) < 0.001
NO Ref SSS (sev) 1.83 (0.90–3.74) 0.097 1.78 (0.81–3.93) 0.155
BMI, kg/m2

< 24 Ref SSS (sev) 1.66 (0.39–6.99) 0.490 1.82 (0.38–8.69) 0.456
≥ 24 Ref SSS (sev) 1.88 (1.19–2.97) 0.007 2.57 (1.60–4.12) < 0.001
Renal disorder
Yes Ref SSS (sev) 2.06 (0.49–8.61) 0.320 2.78 (0.67–11.57) 0.159
NO Ref SSS (sev) 1.89 (1.19-3.00) 0.007 2.60 (1.59–4.27) < 0.001
hyperuricemia
Yes Ref SSS (sev) 3.41 (0.71–16.27) 0.124 3.71 (0.80-17.19) 0.094
NO Ref SSS (sev) 1.78 (1.12–2.81) 0.014 2.55 (1.59–4.11) < 0.001
SIS: segment-involvement score; SSS: segment stenosis score
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P = 0.166). The leave-one-out sensitivity analysis showed 
that the association between serum cystatin C level and 
coronary atherosclerosis was not substantially driven by 
any individual SNP (Fig.  3). Asymmetry in the funnel 
plot indicates directional horizontal pleiotropy, which 
can bias MR methods; however, the funnel plot and MR 
Egger regression test showed no evidence of asymmetry 
(Fig. 4).

Discussion
In this large-scale population-based study, we investi-
gated the association between serum cystatin C level and 
coronary atherosclerotic plaque burden. To the best of 
our knowledge, it’s the first study to research the asso-
ciation between serum cystatin C level and coronary 
atherosclerotic plaque burden. Our results demonstrated 
that serum cystatin C was strongly associated with severe 
plaque burden independent of traditional cardiovascu-
lar disease predictors. Furthermore, cystatin C provides 
incremental information for the risk stratification of 

Fig. 1 Scatter plot to visualize causal effect of serum cystatin C levels on coronary atherosclerosis. The slope of the straight line indicates the magnitude 
of the causal association
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female objects age range 55 to 65 years old, accompany 
with hypertension or with higher BMI. In two-sample 
MR analyses, we found a potential association between 
genetic determinants of cystatin C level and coronary 
atherosclerosis.

Cystatin C is an endogenous cysteine proteinase 
inhibitor which is filtered by the renal glomerulus, and 
metabolized by the proximal tubule [19]. Compared with 

creatinine, it is less affected by age, sex, and lean muscle 
mass which regarded as a sensitive biomarker of renal 
function [20]. Clinical research has reported that higher 
levels of cystatin C may indicate the presence of any vul-
nerable plaque in CAD [21]. Cystatin C may associated 
with the destabilization and rupture of coronary artery 
plaque in the pathological processes of atherosclerosis, 
which were account for the high risk of cardiovascular 

Fig. 2 Fixed-effect IVW analysis of the causal association of serum cystatin C levels with coronary atherosclerosis. The black dots and bars indicated the 
causal estimate and 95% CI using each SNP. The red dot and bar indicated the overall estimate and 95% CI meta-analyzed by MR-Egger and fixed-effect 
inverse variance weighted method
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events in highest cystatin C quartile [22]. The forma-
tion of coronary atherosclerotic plaque is closely related 

to inflammation [23]. Therefore, several studies pro-
posed that cystatin C is related to inflammatory reaction, 
inflammatory status may contribute to changes in serum 
cystatin C levels [22–24]. Gao D et al. study revealed the 
level of cystatin C in active stage of systemic lupus ery-
thematosus was higher than that in stable stage (P < 0.05), 
the increase degrees are negatively correlated with the 
inner diameter of brachial artery, which implied a corre-
lation of serum cystatin C and vascular endothelial cell 
injury [25].

Previous studies included objects with acute coro-
nary syndrome, objects with acute coronary syndromes 
tend to have a stronger inflammatory response than the 

Table 4 The association of serum cystatin C levels with coronary 
atherosclerosis risk using various methods
Method Beta SE OR 95% CI P 

value
IVW (random effects) 0.004 0.001 1.004 1.002–1.006 < 0.001
IVW (fixed effects) 0.004 0.001 1.004 1.002–1.006 < 0.001
Simple median 0.007 0.002 1.007 1.004–1.011 < 0.001
Weighted median 0.001 0.001 1.000 0.998–1.003 0.794
MR Egger (bootstrap) 0.003 0.001 1.003 1.001–1.006 0.002
IVW: inverse variance weighted

Fig. 3 MR leave-one-out sensitivity analysis for serum cystatin C levels on coronary atherosclerosis. Circles indicate MR estimates for serum cystatin C 
levels on coronary atherosclerosis using inverse-variance weighted fixed-effect method if each SNP was omitted in turn
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general CAD population. Our study objects were com-
munity population with not serious inflammation, while, 
cystatin C was also strongly associated with severe coro-
nary atherosclerotic plaque burden. Of note, Yamashita H 
et al. observed a significant association between cystatin 
C and cardio-ankle vascular index, which is a marker of 
early-stage arteriosclerosis [26]. Thereby, we speculated 
that cystatin C may be a product of medial destruction 
of coronary arteries. Previous study reported that the 
elastase-specific activity of the uninjured arterial extract 

was approximately half that of the atherosclerotic tissue 
extract, mainly due to cysteine proteases [27].

Cathepsin S–deficient mice with attenuated athero-
sclerosis provided convincing evidence for cysteine pro-
tease involvement in atherogenesis [28]. Subsequent 
researches reported that atherosclerosis relevant inflam-
matory cells and cytokines could stimulate the produc-
tion of lysosomal cathepsins, and lead to the increased 
the plasma cystatin C concentrations [6–29]. These 
results revealed that there was a certain dynamic equi-
librium in human tissues between cysteine proteases and 

Fig. 4 Funnel plot of genetic associations with serum cystatin C levels against causal estimates based on each genetic variant individually, where the 
causal effect is expressed in logs odds ratio of coronary atherosclerosis for each unit increase in serum cystatin C levels. The overall causal estimates (β 
coefficients) of serum cystatin C levels on coronary atherosclerosis estimated by inverse-variance weighted (light blue line) and MR-Egger (navy blue line) 
methods are shown
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cystatin C. Cysteine proteases increase with the aggrava-
tion of the activity of atherosclerosis, which contribute 
to an increase in cystatin C. Moreover, Ganda A et al. 
found that serum cystatin C levels were positively cor-
rected with blood monocyte counts after adjusted tra-
ditional risk factors [30]. It suggests that the high blood 
monocyte counts may involve in the potential mecha-
nisms that contribute to the strong relationship between 
cystatin C and cardiovascular risk [30]. In recent years, 
the relationship between cystatin C and cardiovascular 
diseases has been increasingly confirmed. Higher levels 
of cystatin C were associated with increased left ventricle 
mass and a concentric left ventricle hypertrophy phe-
notype independent of standard measurements of renal 
function [31]. Cystatin C protein was detected elevated 
in the plasma in cardiac injury by chronic administration 
of doxorubicin or in myocardial ischaemia by left ante-
rior descending coronary artery occlusion, further analy-
sis revealed an increase in cystatin C correlates with the 
inhibition of cathepsin B activity and accumulation of 
fibronectin and collagen I/III in myocardial tissue from 
the ischaemic area [32]. These studies provided compel-
ling evidence that cystatin C plays an important role in 
the injury process of cardiovascular endothelial cells and 
cardiomyocytes.

In our study, it was found that cystatin C was closely 
correlated with multi-vessel lesions and coronary athero-
sclerotic plaque burden. Furthermore, serum cystatin C 
levels had a causal effect on an increased risk of coronary 
atherosclerosis at the genetic level. These results provide 
objective evidence that cystatin C may be involved in the 
early stage of CAD. However, more pathological mech-
anisms are still needs to be explored by related basic 
pathology studies. Further, our study subjects derive from 
cluster sampling of Lishui living communities (not occu-
pational communities), they have similar demographics 
and medical histories as nationwide sample survey data. 
The representativeness of our study population allows us 
to better assess the prevalence of clinical or subclinical 
CAD.

Several study limitations should also be stated here. 
First, our sample size was not large enough from an epi-
demiological perspective, but this is the largest study ever 
conducted on the coronary atherosclerotic plaque bur-
den. Second, most of the population being composed in 
our study were Han people, therefore, selection bias was 
inevitable. Given the many elements involved in CAD, we 
are cautious of the extension of our findings to different 
regions or races. Third, our study was a cross-sectional 
study based on community population. We demon-
strated an association between cystatin C and coronary 
atherosclerotic plaque burden, but unable to reveal the 
causal relationship between them, this should be further 
research in the future.

Conclusion Elevated serum cystatin C levels were asso-
ciated with coronary atherosclerotic plaque burden inde-
pendent of traditional cardiovascular disease predictors 
as assessed by computed tomography coronary angiog-
raphy. Furthermore, serum cystatin C levels had a causal 
effect on an increased risk of coronary atherosclerosis at 
the genetic level. The metabolic pathway of cystatin C 
could be a target for new therapies against CAD.
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