
R E S E A R C H Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The 
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available 
in this article, unless otherwise stated in a credit line to the data.

Chen et al. BMC Cardiovascular Disorders          (2023) 23:376 
https://doi.org/10.1186/s12872-023-03400-x

BMC Cardiovascular Disorders

*Correspondence:
Zengbin Feng
Fengzengbin1@163.com
1Department of Cardiac Surgery, Affiliated Hospital of Chengde Medical 
University, 36 Nanyingzi Street, Chengde, Hebei 067000, China
2Experimental Center of Morphology, College of Basic Medicine, Chengde 
Medical University, Chengde, Hebei, China

Abstract
Background  The molecular biological mechanisms underlying heart failure (HF) remain poorly understood. 
Therefore, it is imperative to use innovative approaches, such as high-throughput sequencing and artificial 
intelligence, to investigate the pathogenesis, diagnosis, and potential treatment of HF.

Methods  First, we initially screened Two data sets (GSE3586 and GSE5406) from the GEO database containing HF 
and control samples from the GEO database to establish the Train group, and selected another dataset (GSE57345) 
to construct the Test group for verification. Next, we identified the genes with significantly different expression levels 
in patients with or without HF and performed functional and pathway enrichment analyses. HF-specific genes were 
identified, and an artificial neural network was constructed by Random Forest. The ROC curve was used to evaluate 
the accuracy and reliability of the constructed model in the Train and Test groups. Finally, immune cell infiltration 
was analyzed to determine the role of the inflammatory response and the immunological microenvironment in the 
pathogenesis of HF.

Results  In the Train group, 153 significant differentially expressed genes (DEGs) associated with HF were found to 
be abnormal, including 81 down-regulated genes and 72 up-regulated genes. GO and KEGG enrichment analyses 
revealed that the down-regulated genes were primarily enriched in organic anion transport, neutrophil activation, 
and the PI3K-Akt signaling pathway. The upregulated genes were mainly enriched in neutrophil activation and the 
calcium signaling. DEGs were identified using Random Forest, and finally, 16 HF-specific genes were obtained. In the 
ROC validation and evaluation, the area under the curve (AUC) of the Train and Test groups were 0.996 and 0.863, 
respectively.

Conclusions  Our research revealed the potential functions and pathways implicated in the progression of HF, and 
designed an RNA diagnostic model for HF tissues using machine learning and artificial neural networks. Sensitivity, 
specificity, and stability were confirmed by ROC curves in the two different cohorts.
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Introduction
Heart failure (HF) is caused by several factors, including 
systolic and/or diastolic dysfunction, cardiac pumping 
dysfunction, and end-stage of cardiovascular diseases, 
which seriously threaten human health [1]. In recent 
years, with advancements in social medicine and popu-
lation aging, the incidence of cardiac dysfunction in 
patients with various cardiovascular diseases has gradu-
ally increased, and the incidence of HF has continued to 
rise, posing a serious threat to public health [2]. Accord-
ing to epidemiological statistics, the global prevalence of 
HF is 1–2%, with over 10% of affected individuals above 
the age of 70 years [3]. Between 2013 and 2016, an esti-
mated 6.2  million American adults over the age of 20 
years suffered from HF [4]. According to the latest survey 
report, the life-long risk of HF increases after 45 years 
of age and varies from 20 to 45%, depending on race 
and ethnicity [5]. Therefore, the prevention and treat-
ment of HF has become the highest priority for medical 
professionals.

Drug treatment is the primary treatment modality for 
patients with HF. A new era of neuroendocrine inhibi-
tor treatment for HF began in 1987, when CONSENSUS 
successfully confirmed that treatment with angiotensin-
converting enzyme inhibitors reduced the mortality 
rate in patients with HF by 27% [6]. Subsequently, other 
potent drugs, such as angiotensin receptor neprilysin 
inhibitor (ARNI) [7] and sodium-glucose cotransporter 
2 inhibitors (SGLT2i) [8, 9], have developed to reduce 
mortality in patients with HF. With advances in clinical 
management, targeted therapies are being implemented 
in the cardiovascular field, and are expected to represent 
a significant breakthrough in the treatment of patients 
with HF [10]. Various factors can contribute to myocar-
dial injury and subsequent aseptic inflammation of the 
myocardium [11]. If a pathogenic infection is present, it 
leads to inflammatory damage to the myocardium [12], 
activates inflammatory factors, and finally results in myo-
cardial fibrosis [13]. Inflammatory reactions are involved 
in both the onset and progression of HF. Most research-
ers believe that hemodynamic disorders, tissue injury and 
gastrointestinal mucosal ischemia in patients with HF 
can directly or indirectly activate the immune system in 
vivo, increasing circulating inflammatory cytokine lev-
els. These cytokines activate the target cells by interact-
ing with specific receptors on the cell membrane, thereby 
triggering a systemic inflammatory response [14, 15]. 
Therefore, finding an effective method of diagnostic and 
therapeutic strategy, elucidating the molecular biologi-
cal mechanisms of pathogenesis, and inhibiting damage 
caused by inflammatory reactions, are crucial for inhibit-
ing and delaying the progression of HF.

Biomarkers are biological molecules found primarily in 
the blood, other bodily fluids, or tissues, and are usually 

composed of DNA, RNA, microRNA, epigenetic modifi-
cation, or antibodies. They possess hypersensitivity, spec-
ificity, and positive diagnostic value for diseases [16, 17]. 
HF is a complex pathophysiological process, involving 
multiple factors [18], however, it can be predicted using 
a single gene [19]. Bioinformatics is a high-throughput 
technique that can be used to screen multiple databases 
to identify potential pathological biomarkers for various 
diseases [20]. In recent years, the development and appli-
cation of DNA microarrays and next-generation sequenc-
ing technologies, have enabled simultaneous analysis of 
thousands of genes in different disease samples. There-
fore, the use of biomarkers for diagnosis, prognosis, and 
personalized medical services has increased. Numer-
ous studies have been conducted on biomarkers for the 
diagnosis of HF. B-type natriuretic peptide (BNP) was 
one of the earliest biomarkers used to diagnose acute 
HF [21]. The plasma concentration, stability, and diag-
nostic value of Nt-proANP and Nt-proBNP are higher 
in patients with chronic HF [22, 23]. Studies have shown 
that the combined determination of adiponectin and NT-
proBNP is more accurate than that of NT-proBNP alone 
[24]. Other diagnostic biomarkers, such as miR-302b-3p 
[25], Soluble ST2 [26], and Gal-3 [27], have recently been 
identified.

Since the beginning of the 21st century, artificial intel-
ligence (AI) has progressively permeated all aspects of 
our existence, particularly in the medical field [28]. With 
continued exploration of the potential of artificial intelli-
gence, AI-based clinical research will result in a paradigm 
shift in medical practice, thus significantly improving 
the survival rate of many diseases including cancer [29]. 
Currently, the diagnosis of HF is primarily based on the 
clinical signs and symptoms of patients, with echocar-
diography and chest radiography serving as the most 
common auxiliary tests. However, these examinations 
are not accurate during the intermediate and late phases 
of the disease and lack clinical specificity and sensitiv-
ity. Therefore, exploring a reliable diagnostic approach to 
reduce mortality and improve the prognosis of patients 
with HF is critical. In this study, we first identified the 
characteristic abnormal genes associated with HF using 
machine learning, and then constructed and validated a 
prediction model using an artificial neural network.

Methods
Data acquisition
We accessed the available datasets from the GEO web-
site (https://www.ncbi.nlm.nih.gov/geo/) to construct HF 
and NFD (non-failure donor) cohorts. The Train group 
included 16 cases without HF, 86 cases with dilated car-
diomyopathy (CMP), and 108 cases with ischemic heart 
disease from GSE5406 dataset [30], as well as 13 cases of 
dilated cardiomyopathy and 15 cases of non-HF GSE3586 
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dataset [31]. To verify the reliability and stability of the 
artificial neural network model more thoroughly, we 
included 96 cases with ischemic heart disease, 84 cases 
with dilated cardiomyopathy (CMP), and 139 cases with-
out HF in the Test group from the GSE57345 dataset [32].

Analysis of differential gene expressions and functional 
enrichment in HF
The R package “limma” was used to identify differentially 
expressed genes (DEGs) in HF, and “heatmap” was used 
to plot heat and volcano maps. Genes with |logFC| > 0.6 
(|fold change| ≥ 1.5) and false discovery rate (FDR) < 0.05 
were considered statically significant. Subsequently, we 
performed GO and KEGG enrichment analysis [33] 
using R packages “org.Hs.eg.db”(3.14.0), “clusterPro-
filer”(4.0), “ggplot2”(3.3.5) and “enrichment plot”. For 
further biological insights into the DEGs, we conducted 
bioinformatics analysis of Reactome, WikipathwayCan-
cer and Metascape analysis using WebGestalt 2019 web-
site (http://www.webgestalt.org/) and Metascape (version 
3.5; http://metascape.org/), while protein-protein inter-
action modes were obtained from the String website (ver-
sion 11.5; https://cn.string-db.org/).

Identification of disease-specific genes and construction of 
an artificial neural network
We then conducted a random-forest analysis using the 
“randomForest” package (version 4.6) and filtered the 
DEGs to identify the nodes with the lowest cross-valida-
tion errors. The parameter settings were seed = 123,456 
and ntree = 500. Homologous genes acquired using the 
above two approaches were identified as HF-specific 
genes. Disease signature genes were visualized using the 
“limma” and “pheatmap” packages (version 3.5.3), and the 
samples were clustered according to their expression. To 
eliminate batch effects between cohorts, we scored the 
DEGs based on their expression relative to the median 
value: upregulated genes were assigned a score of 1 for 
values, greater than the median value, otherwise, they 
were scored 0. When this gene was down-regulated, the 
score followed the opposite pattern. We constructed 
an artificial neural network to diagnose HF using gene 
scores. The neural network consisted of three layers, an 
input, a hidden, and an output layer. The R package used 
in this step was “NeuralNetTools”, and the seed was set to 
12,345,678.

Evaluation of the artificial neural network model
The same approach was used to test and validate the gene 
cohort, and to evaluate the diagnostic accuracy of the 
HF model. To evaluate the efficiency of the artificial neu-
ral network model, we plotted ROC curves for the two 
cohorts using the “pROC” package (1.15.3). In the ROC 
curve, the horizontal scale denoted the false positive rate, 

representing “1-Specificity”, and the vertical scale denotes 
the true positive rate, representing “Sensitivity”. The area 
under the curve (AUC) represented the accuracy of the 
model, which was our primary focus.

The immunological milieu of HF
The CIBERSORT algorithm (https://cibersort.stanford.
edu/runcibersort.php) for immune cell infiltration was 
used to quantify 22 immune cells, and the results were 
filtered using a p-value < 0.05. The analysis was per-
formed using the R packages “e1071”, “preprocessCore” 
and “CIBERSORT.R”. Based on these results, we calcu-
lated the correlation between immunocytes. The “cor-
rplot” package (version 0.92) visually displayed immune 
cell contents and predicted their correlation. Finally, we 
measured the distribution of immunocytes, which dif-
fered between cases with or without HF.

Results
Identification of DEGs and functional enrichment analysis
After setting the parameters |logFC| > 0.6 and FDR < 0.05, 
differential expression analysis of the GEO dataset 
revealed 153 differentially expressed genes, of which 81 
were down-regulated and 72 were up-regulated (Fig. 1A 
and B, Additional File Table  1). For these DEGs, GO 
enrichment analysis showed that the 81 down-regulated 
genes were primarily associated with the positive regula-
tion of vascular development, angiogenesis, neutrophil 
activation, L-amino acid transport, and neutrophil-medi-
ated immunity (Fig. 2A). The up-regulated 72 genes were 
primarily involved in muscle system processes, extracel-
lular matrix organization, extracellular structure organi-
zation, muscle contraction, and cell-substrate adhesion 
(Fig.  2B). KEGG enrichment analysis indicated that 
the down-regulated 81 genes were mainly associated 
with the PI3K-AKT signaling pathway, MAPK signaling 
pathway, Cytokine-cytokine receptor interaction, Cal-
cium signaling pathway, HIF-1signaling pathway, Che-
mokine signaling pathway, Focal adhesion, JAK-STAT 
signaling pathway, AGE-RAGE signaling pathway in 
diabetic complications, Th17 cell differentiation, and 
amino acids biosynthesis (Fig.  2C). The up-regulated 
72 genes were mainly involved in the Calcium signaling 
pathway, cGMP-PKG signaling pathway, AGE-RAGE 
signaling pathway in diabetic complications, Th17 cell 
differentiation, Th1, and Th2 cell differentiation, Peroxi-
some, Valine, leucine, isoleucine degradation, and renin 
secretion pathways (Fig. 2D).

Prediction of the function and disease spectrum of 
HF-related factors
The meta-scene analysis provided an overview of the 
network diagram (Fig.  3A). The nodes in this network 
represented the functions or pathways. The higher the 
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similarity between the two nodes, the more genes were 
shared between the two functions or pathways. Figure 3B 
lists the HF-related factors, such as regulation of cell 
adhesion and vascular development, while Fig.  3C, HF-
related diseases are predicted based on disease preva-
lence, such as idiopathic pulmonary arterial hypertension 
and myocardial ischemia. Additionally, Fig.  3D screens 
HF-related transcription factors, including HIF1A, SP1, 
EGR1, and CTCF from an epigenetic perspective. Fig-
ure 3E depicts the function of these genes within specific 
cells.

Network analysis of protein-protein interactions
Protein-protein interaction (PPI) enrichment of the HF-
related genes was analyzed using Metascape algorithm. 
In the network diagram, nodes represented genes or pro-
teins, and nodes with the same color represent genes or 
proteins with related functions. The connection between 
the two nodes indicated a protein-protein interaction 
between the two genes (Fig. 4A), and Fig. 4B shows the 
correlation between functionally different genes or 
proteins.

Selection of disease-specific genes and prediction model 
for the HF
Figure 5 A illustrates the random forest algorithm, with 
the X- and y-axes representing the number of trees 
and cross-validation error, respectively. The black lines 
indicate the error values for all samples. During cross-
validation, we identified the point with the minimum 
error. After locating this point, the number of trees cor-
responding to this point, which was the lowest point on 
the black line, was determined. Then Fig. 5B was created, 
the Y-axis represented the gene name, and the X-axis 

represented the importance score of the gene. The gene 
was considered more important if the score was higher. 
Genes with scores higher than 4 were selected for sub-
sequent analysis. The heat map (Fig.  5C) showed the 
aggregation of genes, indicating the pathogenic nature 
of the genes detected in random forest trees. Figure 5D 
depicts the construction of a neural network model based 
on gene scores, where the input layer comprising genes 
for multiple diseases was linked to the hidden layer dis-
playing disease-related genes according to their obtained 
scores and weights. We observed that there were five 
nodes in the hidden layer. Based on these five nodes and 
their respective weights, we obtained the output layer, 
which was the attribute of the sample. The accuracy of 
the model was further evaluated by constructing ROC 
curves. The accuracy of train group and test group was 
0.993 and 0.995, respectively. Figure  5E, F clearly show 
that the areas under the ROC curves are 0.996 and 0.863, 
respectively. The AUC values were greater than 0.75, 
indicating that our diagnostic model was accurate, reli-
able, and unaffected by alterations in the cohort group. 
The precision, recall, and F1 score of Train group were 
0.957, 0.963, and 0.945, respectively. The precision, recall, 
and F1 score of Test group were 0.893, 0.826, and 0.842, 
respectively.

The immune microenvironment of HF
The histogram in Fig. 6A displays the presence of 22 dis-
tinct immune cell types. We assessed their correlations 
by determining the infiltration of immune cells. The 
results are shown in Fig. 6B, with numbers representing 
the correlation coefficient, red indicating a positive cor-
relation, and blue indicating a negative correlation. The 
highest positive correlation coefficient between activated 

Fig. 1  Genome-wide identification of differentially expressed genes of HF. (A) The heatmap of DEGs in Train group. (B) The volcano plots of DEGs.
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dendritic cells activated and NK cells was 0.41, and the 
highest negative correlation coefficient between acti-
vated NK cells and regulatory T cells was − 0.52. Then 
the immune cell fractions were compared between the 
groups, and the results revealed significant differences in 
naïve B cells, plasma cells, CD4 naïve T cells, CD4 mem-
ory-activated T cells, regulatory T cells, γδ T cells, acti-
vated NK cells, monocytes, M2 macrophages, activated 
DC, and resting mast cells (P < 0.05, Fig. 6C).

Discussion
The mechanism of HF is complex and has not yet been 
fully elucidated at present. Research suggests that abnor-
mal vascular microcirculatory metabolism [34], aber-
rant expression of multiple inflammatory markers [35, 
36], immune responses [37], and abnormal expression 
of metabolic proteins are closely associated with heart 
failure [38]. HF is the leading cause of death from cardio-
vascular disease. Various RNAs and genes are involved in 
regulating cellular activities of vascular smooth muscle 
cells then affecting cardiovascular disease [39, 40]. For 
instance, inflammatory cytokines IL-6 and TNF-α could 

Fig. 2  Functional enrichment analyses of DEGs for HF. (A) Chord diagrams of GO terms belonging to the top 81 down-regulated genes of HF. (B) Chord 
diagrams of GO terms belonging to the top 72 up-regulated genes of HF. (C) Chord diagram of KEGG enrichment pathway of the first 81 down-regulated 
genes in HF. (D) Chord diagram of KEGG enrichment pathway of the first 72 down-regulated genes in HF.
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be the main targets of miR-296a, and their expression 
was abnormal in peripheral blood mononuclear cell of 
patients with coronary artery disease [40]. Despite sig-
nificant advances in the treatment of HF in recent years, 
the 5-year survival rateremains approximately 50% [41], 
and the prognosis is still poor. Therefore, early diagnosis 

and treatment of patients are crucial for reducing the 
incidence and mortality of HF patients. In this study, a 
HF model consisting of 16 characteristic genes was con-
structed using machine learning and artificial intelligence 
based on high-throughput sequencing data from public 

Fig. 3  Prediction of function and disease spectrum of factors related to HF. (A) Metascenario analysis provides an overview of network diagrams. (B) List 
factors associated with HF. (C) The HF-related diseases through disease prevalence were predicted. (D) HF-related transcription factors from the perspec-
tive of epigenetics were screened. (E) The genes in cells were listed
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databases. The model demonstrates high sensitivity and 
specificity for screening purposes, to prevent HF.

HF transcription factors involved in genome regulation 
have been proposed as putative epigenetic mechanisms. 
Zhao and his team workers [42] demonstrated that MIAT 
silencing reduces the incidence of HF by activating the 
PI3K/Akt signaling pathway. The present study found 
that the PI3K-Akt signaling pathway is down-regulated 
in HF. Consistent with the findings of this study, previous 
research has demonstrated that the JAK/STAT signaling 

pathway mediates the inflammatory response, left ven-
tricular remodeling, and myocardial ischemia-reperfu-
sion injury, via the downregulation of genes enriched in 
the JAK-STAT signaling pathway [43, 44]. Furthermore, 
the downregulated GO and KEGG genes were enriched 
in the HIF-1 signaling pathway, Th17 cell differentiation, 
organic anion transport, neutrophil activation, and other 
pathways and functions. Studies [45] have revealed that 
CaMK II oxidative activity is significantly increased in 
patients with HF, thereby activating the calcium signaling 

Fig. 4  The Metascape analyses the protein-protein interaction. (A) Pathway and process enrichment analysis of HF. (B) The sub-module analysis of 
protein-protein Interaction
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pathway, which is consistent with the results of this 
study. Moreover, downregulated GO and KEGG genes 
were enriched in the cGMP-PKG signaling pathway, 
AGE-RAGE signaling pathway in diabetic complications, 
muscle system processes, and extracellular matrix orga-
nization. Th17 cell differentiation was enriched in both 
up-regulated and down-regulated genes. Research [46–
48] has highlighted that Th17 cells can produce IL-17 
and IL-22, which are key effector cytokines. IL-17 is an 
effective inducer of matrix metalloproteinase-1 (MMP-1) 
in human cardiac fibroblasts, which may have potential 
implications in cardiac fibrosis, remodeling, and heart 
failure through various pathways.

We identified disease-specific genes for HF using a 
random forest algorithm in machine learning to facili-
tate the integration of neural network models. The arti-
ficial neural network method, which has been extensively 
applied to cancer diagnosis and treatment models, was 
used to construct a diagnostic model of HF [49]. The 
prediction model of rectal cancer-related microsatellite 
instability (MSI) established by Stanford University [50] 
successfully predicted MSI by identifying the whole-glass 

scanning image (WSI) of HE staining. Moreover, the Dee-
pLabV3 + semantic segmentation model exhibits good 
feature extraction and semantic image segmentation 
abilities. ResNet50, a classical image-classification model, 
has been widely used for target classification and other 
fields [51, 52]. Artificial neural network models have been 
applied to lung cancer [53] and breast cancer [54]. This is 
the first time that an artificial neural network approach 
has been used to develop a heart failure disease model. 
Our diagnostic signal comprised of 16 genes (ECM2, 
LUM, ISLR, ASPN, PTN, SFRP4, GLT8D2, FRZB, FCN3, 
TEAD4, NPTX2, LAD1, ALOX5AP, RNASE2, IL1RL1, 
CD163). Currently, there are no studies on the direct cor-
relation between the ECM2, GLT8D2, NPTX2, LAD1 
genes and HF, however, evidence suggests their potential 
association with HF, may become potential biomarkers 
for HF diagnosis in the future [18, 55–57]. For instance, 
ECM2 was related to immune process and could serve 
as a target for immunotherapy for glioma [58, 59]. Con-
sistently, the present study observed that HF-related 
genes, including ECM2 and CD163, were associated 
with immune cells. CD163, a receptor for tumor necrosis 

Fig. 5  Identification of characteristic genes of HF by machine learning and the construction of diagnosis signature by an artificial neural network. (A) 
The construction of RandomForest. (B) Identification of HF signature genes based on significance scores. (C) The heatmap of CRC characteristic genes. 
(D) Schematic view of the artificial neural network. (E) The ROC curves demonstrate the diagnostic performance of the artificial neural networks for HF in 
Train Group (GEO). (F) Test Group (HF of TCGA)
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factor-like weak apoptosis-inducing factor (TWEAK), 
may serve as a novel marker of HF. Studies demonstrated 
its anti-inflammatory, antioxidant and cardiovascular-
protective effects [60–62]. Furthermore, serum TWEAK 
levels are significantly higher in patients with HF than 
in healthy individuals [63]. ILIRL1 could be induced by 
cardiomyocyte stretch, and might reflect inflammation 
and hemodynamic stress in HF [64]. HIF-α is a key fac-
tor mediating the relationship between obesity and HF 
through affecting fibrosis and inflammation in adipose 
tissue [65]. This demonstrates the effectiveness of gene 
screening in this study, and the significance of these 
genes in the diagnosis, treatment, and prognosis of vari-
ous diseases.

The pathological basis of HF is ventricular remodeling, 
specifically myocardial hypertrophy and fibrosis, which 
results from hemodynamic overload [66]. The JAK/
STAT signaling pathway [44], reactive oxygen species 
(ROS) generation [67], calcium overload [68], Th17 cells, 
PI3K/AKT signaling pathway [69], and MAPK signaling 
pathway have all been implicated in the pathophysiol-
ogy of HF. These findings are consistent with the results 
of the GO/KEGG enrichment pathway. In addition, cell 

adhesion molecules are also involved in the process of HF. 
A previous study noted that focal adhesion kinase-related 
pathways may be inhibited in metformin-treated vascular 
smooth muscle cells then retard the progression of ves-
sel stenosis [70]. Heart failure is frequently associated 
with immune activation and inflammatory responses. As 
important inflammatory mediators, chemokines, exert 
chemotactic effects on various target cells, including vas-
cular endothelial cells, which can contribute to the devel-
opment of HF [71]. Studies have suggested interactions 
between myocardial cells and the microvascular system. 
Persistent pathological overload leads to cardiac malad-
aptation and remodeling, resulting in HF. At the same 
time, cellular senescence affects the cardiac regeneration 
and recovery in patients with ischemic heart disease. The 
study of the differential expression of metabolic proteins 
in patients with HF can enable a better understanding 
of the occurrence of HF, particularly the crucial role of 
angiogenesis factors [38]. Echocardiography is the most 
commonly used method for diagnosing heart failure. 
The disadvantage is that patients have organic lesions, 
and the artificial neural network is primarily calculated 
based on the scores of various factors, and after which 

Fig. 6  The immune microenvironment of HF. (A) Histogram of 22 kinds of immune cells in HF patients and normal controls. (B) The correlation between 
various immune cells of HF patients. (C) Violin chart of differences of individual immune cells
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the diagnosis is made. Neural networks have proven to be 
highly reliable in the diagnosis of HF, which is the first 
time this approach has been used in this context.

In addition to establishing early diagnostic models, 
we investigated the immune microenvironment of HF. 
Studies have shown that the pathological mechanisms 
underlying heart failure include inflammatory immune 
responses and inflammatory cell infiltration [37]. This 
study found a significant increase in dendritic cells (DCs) 
in cases of heart failure. DCs express MHC II, making 
them a unique cell group that presents antigens to T cells. 
DCs also secrete numerous growth factors and cytokines 
to modulate immune responses and inflammation [72]. 
Studies on myocardial infarction suggest that the even-
tual outcome of DCs activity depends on the subset of 
DCs involved and the type of effector cells that are subse-
quently recruited. Ideally, the activation of conventional 
dendritic cells, should increase the activity of tolerant 
dendritic cells to rapidly reduce inflammation [73]. NK 
cells are positively correlated with DCs proliferation. 
Activation of NK cells depends on the balance between 
activation and inhibitory signals from target cells [73]. 
In acute myocardial infarction, studies have shown that 
NK cells promote dendritic cell differentiation by releas-
ing cytokines, thus forming a positive feedback pathway 
and influencing ventricular remodeling [74]. The primary 
pathology of HF is ventricular remodeling. Although 
there is no direct evidence of association between 
NK cells and HF, it can be confirmed that NK cells are 
increased in the pathophysiology of HF, which is consis-
tent with the findings of this study. In contrast, investiga-
tions into cardiovascular diseases have revealed that the 
number of regulatory T cells is reduced. Regulatory T 
cells are a subset of CD4 + T cells with unique immuno-
regulation abilities that maintain immune homeostasis in 
the body, primarily through cell contact and the release 
of inhibitory cytokines (such as IL-10 and TGF-β1) [75]. 
Consistent with the results of this study, there may be a 
negative correlation between NK and regulatory T cells. 
However, this study had some limitations. First, this was 
a retrospective analysis, using datasets retrieved from the 
public database. Moreover, we only verified the predic-
tive performance of HF, treatment and prognosis require 
further investigation. Additionally, experimental and 
clinical studies are necessary to validate the results of this 
study and to assess their implications for the treatment 
and prognosis of HF.

Conclusions
We developed an accurate HF diagnostic model using 
machine learning and an artificial neural network. 
Despite disparities between patient cohorts, this sig-
nature is still effective and can be used for personalized 
disease prediction and precision medicine. In addition, 

immune regulation plays crucial role in the progression 
of HF, and our results have potential implications for the 
use of immunotherapies to treat HF patients in the later 
stage. Substantive and scientific validation of these find-
ings warrants large-scale prospective clinical trials and 
experimental studies.
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