RESEARCH

Open Access

Comparison of outcomes of self-expanding versus balloon-expandable valves for transcatheter aortic valve replacement: a meta-analysis of randomized and propensity-matched studies

Baiqiang Wang¹, Zeyuan Mei¹, Xiao Ge¹, Yunyi Li¹, Quan Zhou¹, Xiao Meng¹ and Guipeng An^{1*}

Abstract

Background The postoperative outcomes of transcatheter aortic valve replacement (TAVR) with the new generation of self-expanding valves (SEV) and balloon-expandable valves (BEV) remain uncertain.

Methods We conducted a meta-analysis based on randomized controlled trials (RCTs) and propensity scorematched (PSM) studies to evaluate the performance of the new generation TAVR devices, with a focus on Edwards SAPIEN 3/Ultra BEV, Medtronic Evolut R/PRO SEV, and Boston ACURATE neo SEV. Our primary endpoints were mortality and complications at both 30 days and one year post-operation.

Results A total of 4 RCTs and 14 PSM studies were included. Our findings showed no significant difference between SEV and BEV regarding 30-day and 1-year mortality rates. ACURATE SEV required less permanent pacemaker implantation (PPI) at 30-day as compared to SAPIEN BEV, while Evolut SEV required a higher rate of PPI than SAPIEN BEV. The incidence of stroke, major or life-threatening bleeding (MLTB), major vascular complications (MVC), coronary artery obstruction (CAO) and acute kidney injury (AKI) did not differ significantly between the two groups. SEV had a larger effective orifice area (EOA) and lower mean transvalvular gradients (MPG) compared to BEV. However, there was an increased risk of paravalvular leakage (PVL) associated with SEV.

Conclusions In terms of 30-day mortality, stroke, bleeding, MVC, AKI, CAO, and one-year mortality, there was comparability between the two valve types following TAVR. SEV was associated with better hemodynamic outcomes, except for a higher incidence of PVL. Compared to SAPIEN BEV, ACURATE SEV had a lower risk of PPI at 30 days, while Evolut SEV was associated with a higher risk of PPI. These findings underscore the importance of personalized valve selection.

Keywords Transcatheter aortic valve replacement, Self-expanding valves, Balloon-expandable valves, New generation valves, Meta-analysis

*Correspondence: Guipeng An guipengan@hotmail.com Full list of author information is available at the end of the article

© The Author(s) 2023. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction

In patients with symptomatic aortic stenosis ranging from low to high risk, transcatheter aortic valve replacement (TAVR) has emerged as an effective alternative to surgical aortic valve replacement since its introduction by Cribier in 2002 [1–3]. There are two commercially available types of transcatheter heart valves (THV): balloon-expandable valves (BEV) and self-expanding valves (SEV). A BEV utilizes the radial strength of the accompanying balloon to facilitate expansion. In contrast, an SEV automatically deploys and expands until it encounters the resistance of the annular wall, thereby adapting to the anatomical characteristics of the aortic annulus [4].

In recent years, both platforms have undergone significant modifications aimed at enhancing the safety and effectiveness of the procedure. Currently, the most commonly used balloon-expandable valve (BEV) in clinical practice is the SAPIEN 3/Ultra BEV (Edwards Lifesciences Corporation, Irvine, CA, USA). The commonly used self-expanding valves (SEV) include the Evolut R/ PRO SEV (Medtronic Inc., Minneapolis, MN, USA) and the ACURATE neo SEV (Boston Scientific, MA, USA). While these two valve platforms share several features in terms of valve design and procedural characteristics, they also exhibit differences in other aspects. The SAPIEN 3/ Ultra is BE intra-annular trileaflet bovine pericardium valves mounted on a cobalt-chromium frame. The Evolut R/PRO is a SE supra-annular trileaflet porcine pericardium valve mounted on a nitinol frame. The ACURATE neo is a SE supra-annular trileaflet porcine pericardium valve mounted on a nitinol frame. In contrast to Evolut SEV, the ACURATE neo features a unique, top-down two-step deployment mechanism [5].

Prior studies have mostly focused on comparing firstgeneration Corevalve or SAPIEN XT devices [6, 7], and limited data are available regarding the comparison between current iterations of BEV and SEV. Therefore, in this meta-analysis, we evaluated and compared the postoperative outcomes of patients with symptomatic severe aortic stenosis treated with TAVR using the new-generation BEV and SEV. Most studies comparing the two THV types are observational studies, with only a few randomized controlled trials available. Hence, we included only randomized and PSM studies to ensure the reliability of our meta-analysis.

Methods

We adhered to the PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) statement for systematic reviews and meta-analyses when designing this study [8]. Our literature search encompassed PubMed, EMBASE, and Cochrane library from their inception through February 12, 2023. The search strategy utilized the following keywords and Medical Subject Headings (MeSH): "transcatheter aortic valve replacement," "transcatheter aortic valve implantation," "TAVR," "TAVI," "self-expanding valves," and "SEV." In addition, we reviewed the references of all identified studies for any other potentially relevant publications. The details of our search strategy are presented in Supplementary Table 1. Two independent searchers (X.G. and Z.M.) conducted the literature searches, and any issues were resolved through discussion or consultation with a third searcher (Y.L.) if needed.

To determine whether the studies will ultimately be used in the research, two reviewers independently screened the title and abstract of each reference. In the screening process, Endnote 20 document management software will be used. The following criteria were used to determine study inclusion: (1) patients undergoing TAVR for aortic stenosis; (2) trials comparing new generation SEV with the new generation BEV; (3) only RCT and PSM studies were considered. The primary outcomes of interest were mortality and complications. Several complication outcomes were of interest, including stroke, permanent pacemaker implantation (PPI), major or lifethreatening bleeding (MLTB), major vascular complications (MVC), acute kidney injury (AKI), coronary artery obstruction (CAO), mild paravalvular leak (PVL), moderate to severe PVL, mean transvalvular gradients (MPG), and effective orifice area (EOA).

Two reviewers (Z.M. and Y.L.) independently collected the following data from the text, tables, and figures: (1) characteristics of the included studies; (2) baseline characteristics of the study population; and (3) outcomes of interest. A pre-specified form was used for data extraction. The risk of bias of RCT was assessed using the Cochrane Collaboration's risk of bias tool [9], and the quality of PSM studies was evaluated using the Newcastle–Ottawa Scale [10]. The results of the quality assessments are presented in Supplementary Table 2 and Table 3.

Categorical variables are presented as percentages and continuous variables as means and standard deviations (SD). Some studies reported median and interquartile range, which were converted to mean and SD; median is considered as mean, and SD is calculated by dividing the interquartile range by 1.35. Review Manager (RevMan, Version 5.4, The Cochrane Collaboration, 2020) was used for meta-analysis. Based on the Mantel–Haenszel method with random-effects models, forest plot outcomes were expressed as risk ratios (RRs) and 95% confidence intervals (CIs). The heterogeneity of outcomes between the studies was calculated by I^2 . We calculated the I^2 statistic and degree of freedom (df) to estimate variation between studies. We defined an $I^2 < 25\%$, 25%—50%, and >50%

as low, moderate, and high heterogeneity, respectively. Inverse variance was used to calculate pooled mean differences (MDs) with 95% CIs for continuous variables. Hypothesis testing was conducted at the level of 0.05 to ensure statistical significance.

Subgroup analysis was performed based on the design type of the study, and the results are presented in Supplementary Fig. 1. To test for robustness and explore heterogeneity in the pooled results, sensitivity analysis was conducted by removing one or more specific studies from the collection at a time. Funnel plots were generated for analyses with > 10 studies and were visually inspected for the asymmetrical distribution of data points across the vertical treatment effect axis. We used the STATA statistical software package (Version 16.1, StataCorp, College Station, Texas,USA) to create funnel plots (Supplementary Fig. 2) and perform Egger statistics.

Results

Out of the 1327 articles initially found, 1289 were deemed irrelevant and excluded based on the titles and abstracts. The full text of the remaining 38 records was carefully reviewed. One study conducted by Deharo et al. was excluded from the meta-analysis due to its potential

bias issues as it included a large cohort of tens of thousands of individuals [11]. Finally, a total of 18 publications were included in the analysis [12-29]. The details of the literature search and screening processes are presented in Fig. 1. Lanz et al. and Kim et al. reported the early and long-term outcomes of the SCOPEI RCT. Thiele et al. and Feistritzer et al. reported the early and long-term results of the SOLVE-TAVI RCT, respectively. Additionally, van Nieuwkerk et al. and Vlastra et al. reported early and long-term outcomes from the CENTER trial. The remaining 12 articles were observational studies based on propensity score matching, and a total of 9641 patients were included, with 4678 treated with SEV-TAVR and 4963 with BEV-TAVR. The main results of our study were presented in Fig. 2. The study and patient characteristics are summarized in Table 1 and Table 2, respectively.

Data from 15 studies were used to calculate the 30-day mortality rates. Among the 1720 patients treated with ACURATE SEV, 44 (2.6%) died, while 74/2981 (2.5%) deaths occurred in Evolut SEV and 95/4977 (1.9%) in SAPIEN BEV. SEV had a higher risk of death within 30 days compared to BEV in ACURATE (RR 1.42, 95% CI 0.84 to 2.40, p=0.19, I²=16%) and Evolut (RR 1.24, 95% CI 0.88 to 1.74, p=0.22, I²=0%), but the difference

Fig. 1 The flow diagram for study search process

CENTRAL ILLUSTRATION Comparison of Outcomes of Self-expanding versus Balloon-expandable Valves for Transcatheter Aortic Valve Replacement: A Meta-Analysis of Randomized and **Propensity-Matched Studies** SAPIEN 3/Ultra ACURATE neo Evolut R/PRO SAPIEN Evolut p-valve ACURATE p-valve 30-day mortality 1.90% 2.50% 0.22 2.60% 0.19 One-year mortality 11.80% 12.20% 0.18 10.40% 0.58 Stroke 1.90% 3.30% 0.09 2.60% 2.18 PPI < 0.00001 11.50% 16.90% 9.70% 0.001 MLTB 5.00% 3.30% 0.79 7.90% 0.13 MVC 4.30% 0.45 7.20% 0.96 6.70% 4.40% 3.80% 0.38 AKI 3.60% 0.85 MTG Ref -3.72 < 0.00001 -3.76 < 0.00001 0.39% CAO 0.87 0.35 0.27% 0.35% Mild PVL 24.50% 40.80% < 0.0000139.20% 0.007 Moderate to severe PVL 5.90% 2.80% 5.40% 0.07 < 0.0001 EOA Ref 0.16 < 0.00001 0.20 < 0.00001 < 0.00001 Severe PPM 12.40% 2.50% 3.00% < 0.00001 PPI = permanent pacemaker implantation; MLTB = major or life-threatening bleeding; MVC = major vascular complications; AKI = acute kidney injury; MTG = mean transvalvular gradients; CAO = coronary artery obstruction; PVL = paravalvular leak; EOA = effective orifice area; PPM = patient prosthesis mismatch.

Fig. 2 Clinical and echocardiographic outcomes after transcatheter aortic valve replacement according to Self-expanding (Evolut R/PRO, ACURATE neo) versus Balloon-expandable (SAPIEN 3/Ultra) Valves

was not statistically significant (Fig. 3A). Data on oneyear mortality were available from 8 studies. At the oneyear follow-up, the risk of all-cause mortality was higher in the ACURATE (RR 1.26, 95% CI 0.90 to 1.76, p=0.18, $I^2=17\%$) and Evolut (RR 1.07, 95% CI 0.85 to 1.34, p=0.58, $I^2=0\%$) groups compared to BEV, but the difference was not statistically significant (Fig. 3B).

A total of 15 trials provided data on stroke incidence at 30 days. In the pooled analysis, ACURATE (RR 1.04, 95%

CI 0.68 to 1.60, p = 0.85, $I^2 = 0\%$) and Evolut (RR 1.76, 95% CI 0.91 to 3.37, p = 0.09, $I^2 = 52\%$) were associated with an increased risk of stroke compared to SAPIEN, but the difference was not statistically significant (Fig. 4A). In a sensitivity analysis where the study by Thiele et al. was excluded, the use of Evolut SEV was significantly associated with a higher risk of stroke than the use of BEV (RR 2.31, 95% CI 1.57 to 3.39, p < 0.001, $I^2 = 0\%$). Subgroup analysis showed that SEV was associated with a higher

Study	Year	Valve type	Trial	Sample size SEV/BEV	Follow-up	Design	Center	NOS/Bias risk
Barth	2019	ACURATE neo SAPIEN 3	-	329/329	319±291 days	PSM	multicenter	9
Costa	2018	ACURATE neo SAPIEN 3 Evolut R	-	96/48	1 year	PSM	single center	9
Costa	2022	Evolut PRO SAPIEN 3 Ultra	OPERA-TAVI	683/683	30 days	PSM	multicenter	9
Finkelstein	2018	Evolut R SAPIEN 3	-	126/126	3 years	PSM	multicenter	8
Hase	2020	Evolut R SAPIEN 3	OCEAN-TAVI	69/69	1 year	PSM	multicenter	9
Husser	2017	ACURATE neo SAPIEN 3	-	311/622	30 days	PSM	multicenter	8
Lanz	2019	ACURATE neo SAPIEN 3	SCOPEI	372/363	30 days	RCT	multicenter	Low risk
Kim	2021	ACURATE neo SAPIEN 3	SCOPEI	372/363	1 year	RCT	multicenter	Low risk
Mangieri	2020	Evolut R/PRO SAPIEN 3	BEAT	77/77	1 year	PSM	multicenter	9
Mauri	2017	ACURATE neo SAPIEN 3	-	92/92	1 year	PSM	multicenter	9
Pellegrini	2023	ACURATE neo 2 SAPIEN 3 Ultra	-	472/472	30 days	PSM	multicenter	9
Potratz	2022	Evolut Pro SAPIEN 3	-	170/170	30 days	PSM	multicenter	9
Rheude	2022	Evolut R/PRO SAPIEN 3 Ultra	-	467/467	30 days	PSM	multicenter	9
Schaefer	2017	ACURATE neo SAPIEN 3	-	104/104	30 days	PSM	single center	8
Thiele	2021	Evolut R SAPIEN 3	SOLVE-TAVI	219/219	30 days	RCT	multicenter	Low risk
Feistritzer	2020	Evolut R SAPIEN 3	SOLVE-TAVI	219/219	1 year	RCT	multicenter	Low risk
van Nieuwkerk	2021	Evolut R SAPIEN 3	CENTER	791/614	1 year	PSM	multicenter	8
Vlastra	2018	Evolut R SAPIEN 3	CENTER	1091/1122	30 days	PSM	multicenter	8

Table 1 The characteristics of the studies

PSM Propensity score matching, RCT Randomized controlled trial, NOS Newcastle-Ottawa Scale

risk of stroke in the PSM studies (RR 1.77, 95% CI 1.27 to 2.47, p = 0.0007, $I^2 = 10\%$).

Fifteen studies provided data on permanent pacemaker implantation (PPI). Among them, 161/1658 (9.7%) PPI patients were in ACURATE SEV, 502/2968 (16.9%) in Evolut SEV, and 563/4916 (11.5%) in SAPIEN BEV. Our analysis indicated that ACURATE had a lower risk of PPI compared to BEV (RR 0.73, 95%CI 0.61 to 0.89, p=0.001, I²=0%). In contrast, Evolut had a relatively higher risk of PPI (RR 1.57, 95%CI 1.31 to 1.88, p<0.00001, I²=32%; Fig. 4B).

Data on major or life-threatening bleeding (MLTB) events were reported in 14 studies. Among 1599 patients receiving ACURATE SEV, 127 (7.9%) experienced bleeding, compared to 502/2968 (3.3%) with Evolut SEV and

210/4203 (5.0%) with SAPIEN BEV. Compared to BEV, ACURATE SEV was associated with a higher risk of bleeding (RR 1.21, 95% CI 0.95 to 1.55, p=0.13, $I^2=0\%$), while Evolut SEV was linked to a lower risk (RR 0.93, 95% CI 0.56 to 1.56, p=0.79, $I^2=57\%$). However, there was no significant difference between the groups (Fig. 5A).

The incidence of major vascular complications (MVC) was reported in 12 studies, and no significant difference was observed between SEV and BEV in the pooled results (ACURATE SEV: RR 0.99, 95%CI 0.68 to 1.45, p=0.96, $I^2=45\%$; Evolut SEV: RR 0.84, 95%CI 0.54 to 1.32, p=0.45, $I^2=11\%$; Fig. 5B). Specifically, there were 115/1599 (7.2%) MVC patients in ACURATE SEV, 48/1106 (4.3%) in Evolut SEV, and 188/2795 (6.7%) in SAPIEN BEV. In sensitivity analysis, after excluding the

Table 2 The baseline characteristics of the patients

Study	Study period	Valve type	Age, years	Male, %	STS risk score, %	Logistic EuroSCORE, %	Aortic valve gradient,mmHg	Aortic valve area
Barth	2012-2016	ACURATE neo	81+5	44.1	NA	18.8±14.7	44±15	0.68±0.18
		SAPIEN 3	81+6	44.4	NA	19.1±13.6	45 ± 14	0.67 ± 0.17
Costa	2014.09-2018.02	Evolut R	83(80–85)	29.2	3.9 ± 2.3	NA	52.8±14.1	NA
		ACURATE neo	82(80-85)	31.2	4.0±3.3	NA	51.3 ± 14.5	NA
		SAPIEN 3	83(82–85)	31.2	3.8±1.7	NA	51.3±17.2	NA
Costa	2017.09-2022.01	Evolut PRO	82(78–85)	46	3.4(2.3-4.7)	NA	44(35–53)	0.7(0.6–0.8)
		SAPIEN 3 Ultra	82(77–86)	46.1	3.1(2.1-4.9)	NA	44(36–51)	0.7(0.5–0.8)
Finkelstein	2012.02-2016.12	Evolut R	82(76–86)	61.9	3.2(2.2-4.7)	NA	40(33–53)	0.7(0.6–0.8)
		SAPIEN 3	82(78–85)	66.7	3.2(2.3-4.8)	NA	43(33–52)	0.7(0.6–0.8)
Hase	2013.10-2017.05	Evolut R	86(84–89)	15.9	6.4(4.8-8.4)	NA	49(35–69)	NA
		SAPIEN 3	87(82–89)	17.4	6.1(4.7-8.6)	NA	48(40–64)	NA
Husser	2014.01-2016.01	ACURATE neo	81±6	39.2	NA	18±10	45±15	NA
		SAPIEN 3	81±6	44.7	NA	18±12	44±16	NA
Lanz/Kim	2017.02-2019.02	ACURATE neo	82.6 ± 4.3	41	3.7(2.5-4.9)	NA	43±17	0.7±0.2
		SAPIEN 3	83.0 ± 3.9	45	3.4(2.6-5.2)	NA	42±15	0.7 ± 0.2
Mangieri	2013.06-2018.10	Evolut R/PRO	79.1 ± 7.8	62.3	4.4±3.1	NA	49.3±16.5	NA
		SAPIEN 3	79.4 ± 7.9	53.3	4.2 ± 2.5	NA	49.4±16.7	NA
Mauri	2014.02-2016.08	ACURATE neo	82.8±6.5	7.6	NA	16.2±8.8	46±16	0.68±0.19
		SAPIEN 3	81.9±5.3	7.6	NA	16.6±8.8	47±16	0.65±0.17
Pellegrini	2019.03-2021.12	ACURATE neo2	82(79–85)	49.4	NA	13.8(7.9–23)	43(34–52)	NA
		SAPIEN 3 Ultra	82(78–85)	47.9	NA	12.5(7.9–21.8)	42.5(34.8-51)	NA
Potratz	2014.06-2019.12	Evolut Pro	82.5 ± 5.1	42	NA	NA	49.1±15.9	0.69 ± 0.17
		SAPIEN 3	82.9 ± 6.7	40	NA	NA	47.8±18.1	0.69 ± 0.17
Rheude	2014.11-2020.12	Evolut R/PRO	82(78–85)	48.2	NA	12(7.8-20.3)	43(35–53)	NA
		SAPIEN 3 Ultra	82(77–85)	49	NA	11.9(7.6–21.5)	44(36–53)	NA
Schaefer	2012-2016	ACURATE neo	81.7±5.5	28	5.8±3.8	15.9±9.3	NA	NA
		SAPIEN 3	81.2±6.2	32	5.4 ± 3.6	13.7±9.0	NA	NA
Thiele/	2016.04-2018.04	Evolut R	81.7±5.3	47.9	4.9(2.9–9.9)	14.9(8.9–23.8)	38.5(30-50.5)	0.7(0.6–0.9)
Feistritzer		SAPIEN 3	81.5 ± 5.7	49.8	4.7(3.1–9.4)	14.8(8.6–24.4)	37(26.5–47.5)	0.8(0.6–0.9)
Vlastra/	2010-2018	Evolut R	81.3±7.1	43	6.6(4–12.8)	15(9.3–23.3)	51.1±17.4	NA
van Nieuwkerk		SAPIEN 3	81.5±7.1	42	6.3(4-14.4)	15(9.7-23.0)	51.0±17.6	NA

STS Society of Thoracic Surgeons

study by Pellegrini et al., the heterogeneity decreased, and there was still no statistically significant difference in the occurrence rate of MVC between ACURATE and SAPIEN (RR 1.21, 95%CI 0.89 to 1.65, p = 0.23, $I^2 = 7\%$).

Data regarding acute kidney injury (AKI) were provided by 10 studies. There were 45/1183 (3.8%) AKI patients in ACURATE SEV, 48/1093 (4.4%) in Evolut SEV, and 93/2584 (3.6%) in SAPIEN BEV. There was no statistically significant difference between the groups (RR 1.21, 95%CI 0.79 to 1.84, p=0.38, $I^2=0\%$; RR 0.94, 95%CI 0.53 to 1.70, p=0.85, $I^2=40\%$; Fig. 6A).

Results from eleven studies were included to assess the outcomes of coronary artery obstruction (CAO) following TAVR using ACURATE, Evolut, and SAPIEN valves. The incidence rates of CAO after valve implantation were 0.39%, 0.35%, and 0.27% for ACURATE, Evolut, and SAPIEN valves, respectively. SAPIEN BEV demonstrated a relatively lower risk of CAO compared to SEV, but no statistically significant differences were observed between SEV and BEV (RR 1.90, 95%CI 0.50 to 7.28, p=0.35, $I^2=0\%$; RR 1.08, 95%CI 0.41 to 2.84, p=0.87, $I^2=0\%$; Fig. 6B).

Eight studies reported the incidence of early mild paravalvular leak (PVL). There were 281/716 (39.2%) mild PVL patients in ACURATE SEV, 587/1437 (40.8%) in Evolut SEV, and 528/2153 (24.5%) in SAPIEN BEV. Compared to SAPIEN BEV, the incidence of mild PVL was higher in ACURATE SEV (RR 1.53, 95%CI 1.13 to 2.08, p=0.007, I²=71%) and Evolut SEV (RR 1.63, 95%CI 1.36 to 1.96, p < 0.00001, I²=51%; Fig. 7A).

A 30-day mortality								
	SEV	,	BEV			Risk Ratio	Risk Ratio	
Study or Subgroup 1.1.1 ACURATE vs SA	Events PIEN	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl	
Barth 2019	15	329	7	329	9.6%	2.14 [0.89, 5.19]		
Costa 2018	0	48	0	48	0.00/	Not estimable		
Husser 2017	/	311	12	622	8.8%	1.17 [0.46, 2.93]		
Mauri 2017	9	92	2	92	4.4%			
Pellegrini 2023	8	464	11	465	9.2%	0.73 [0.30, 1.80]		
Schaefer 2017	4	104	1	104	1.6%	4.00 [0.45, 35.19]		
Subtotal (95% CI)		1720		2027	34.9%	1.42 [0.84, 2.40]	◆	
Total events Heterogeneity: Tau ² = Test for overall effect:	44 0.07; Ch Z = 1.32	ni ² = 5.9 2 (P = 0.	36 96, df = 19)	5 (P =)	0.31); I ² =	- 16%		
1.1.2 Evolut vs SAPIEI	N							
Costa 2018	0	48	0	48		Not estimable		
Costa 2022	13	683	9	683	10.5%	1.44 [0.62, 3.36]	- +-	
Finkelstein 2018	3	126	2	126	2.4%	1.50 [0.25, 8.82]		
Hase 2020	2	69	2	69	2.0%	1.00 [0.14, 6.90]		
Potratz 2020	3	170	4	170	3.5% 1 1%	U.15 [U.17, 3.24]		
Rheude 2022	9	467	9	467	4.4% 8.9%	1.25 [0.34, 4.56]		
Thiele 2021	7	219	5	219	5.8%	1.40 [0.45, 4.34]		
Vlastra 2018	32	1122	24	1091	27.4%	1.30 [0.77, 2.19]		
Subtotal (95% CI)		2981		2950	65.1%	1.24 [0.88, 1.74]	◆	
Total events	74	2	59					
Heterogeneity: Tau ² = Test for overall effect:	0.00; Cr Z = 1.24	$hi^2 = 0.9$ h(P = 0.9)	96, df = 22)	7 (P =	1.00); l ² =	: 0%		
Total (95% CI)		4701		4977	100.0%	1.29 [0.98, 1.70]	◆	
Total events	118		95					
Heterogeneity: Tau ² =	0.00; Ch	$ni^2 = 7.0$	9, df =	13 (P =	: 0.90); l ²	= 0%	0.01 0.1 1 10 100	
Test for overall effect: Test for subgroup diffe	Z = 1.84 erences:	1 (P = 0. Chi ² = (07) D.19, df	= 1 (P	= 0.66), I ²	$^{2} = 0\%$	Favours SEV Favours BEV	
В				O	ne-ye	ar mortality		
	SEV	/	BEV	/		Risk Ratio	Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M–H, Random, 95% Cl	
1.2.1 ACURATE vs SA	PIEN	220	27	220	20.00	1 40 (1 01 0 10)		
Barth 2019	55	329	37	329	20.6%	1.49 [1.01, 2.19]		
Kim 2021	40	361	30	356	15.3%	1 31 [0 84 2 06]		
Mauri 2017	6	92	10	92	3.3%	0.60 [0.23, 1.58]		
Subtotal (95% CI)		830		825	39.5%	1.26 [0.90, 1.76]	◆	
Total events	101	.2	78					
Test for overall effect:	Heterogeneity: Tau ² = 0.02; Chi ² = 3.61, df = 3 (P = 0.31); $I^2 = 17\%$ Test for overall effect: Z = 1.34 (P = 0.18)							
1.2.2 Evolut vs SAPIE	N							
Costa 2018	1	48	1	48	0.4%	1.00 [0.06, 15.53]		
Feistritzer 2020	34	219	33	219	15.9%	1.03 [0.66, 1.60]		
Hase 2020	12	126	10	126	5.1%	1 10 [0.50, 2.38]		
van Nieuwkerk 2021	90	791	65	614	34.1%	1.07 [0.80, 1.45]	-	
Subtotal (95% CI)	20	1253		1076	60.5%	1.07 [0.85, 1.34]	•	
Total events	148		120					
Heterogeneity: Tau ² = Test for overall effect:	0.00; Ch Z = 0.55	$hi^2 = 0.0$ 5 (P = 0.	4, df = 4 58)	4 (P = 1	1.00); I ² =	0%		
Total (95% CI)		2083		1901	100.0%	1.15 [0.97, 1.37]	•	
Total events	249		198					
Heterogeneity: $Tau^2 =$	0.00; Ch	$i^2 = 4.8$	1, df =	8 (P = ($(0.78); I^2 =$	0%	0.01 0.1 1 10 100	
l lest for overall effect:	2 = 1.58	$Chi^2 = 0.$	11) 15 df	- 1 (P -	$= 0.42) I^{2}$	= 0%	Favours SEV Favours BEV	

Fig. 3 Forest plots. (A) 30-day mortality. (B) One-year mortality

A Stroke								
	SEV		BEV			Risk Ratio	Risk Ratio	
Study or Subgroup	Events	Total	Events	⊤otal	Weight	M-H, Random, 95% CI	M-H, Random, 95% Cl	
2.1.1 ACURATE vs SA	PIEN							
Barth 2019	6	329	3	329	6.3%	2.00 [0.50, 7.93]		
Costa 2018	0	48	0	48	10 70/	Not estimable		
Husser 2017	/	311	19	622	10.7%	0.74 [0.31, 1.73]		
Lanz 2019	2	367	11	367	9.9%	0.64 [0.25, 1.62]		
Pellegrini 2023	16	348	11	348	4.4%	1.50 [0.20, 0.77]		
Schaefer 2017	2	104	2	104	3.8%	1.00 [0.14 6.97]		
Subtotal (95% CI)	-	1599	-	1910	47.1%	1.04 [0.68, 1.60]	•	
Total events	41		48				Ĭ	
Heterogeneity: Tau ² = Test for overall effect:	0.00; Ch Z = 0.19	$ii^2 = 3.4$ (P = 0)	47, df = .85)	5 (P =	0.63); I ² =	- 0%		
2.1.2 Evolut vs SAPIE	N							
Costa 2018	0	48	0	48		Not estimable		
Costa 2022	27	683	8	683	11.6%	3.38 [1.54, 7.38]		
Finkelstein 2018	2	126	3	126	4.4%	0.67 [0.11, 3.92]		
Hase 2020	3	69	0	69	1.9%	7.00 [0.37, 133.02]		
Mangieri 2020	1	67	0	65	1.6%	2.91 [0.12, 70.20]		
Potratz 2022	3	170	2	170	4.4%	1.50 [0.25, 8.86]		
Rheude 2022	22	467	14	467	13.1%	1.57 [0.81, 3.03]	+	
Thiele 2021	1	210	10	214	3.5%	0.10 [0.01, 0.79]		
Vlastra 2018	31	1091	10	1122	12.4%	3.19 [1.57, 6.47]		
Subtotal (95% CI)		2931		2964	52.9%	1.76 [0.91, 3.37]		
I otal events	90	:2 14	4/	7 (D	0.04).12	F 20/		
Test for overall effect:	Z = 1.69	P = 14	.09)	= 7 (P =	• 0.04); I [_]	= 52%		
Total (95% CI)		4530		4874	100.0%	1.41 [0.92, 2.16]	◆	
Total events	131		95					
Heterogeneity: Tau ² =	0.25; Ch	$i^2 = 23$	3.37, df =	= 13 (P	= 0.04); I	$^{2} = 44\%$		
Test for overall effect:	Z = 1.60	(P = 0)	.11)				Favours SEV Favours BEV	
Test for subgroup diff	erences	Chi ² =	1.71, df	= 1 (P	= 0.19), I	$^{2} = 41.5\%$		
D		_						
В		Pe	erma	nen	t pac	emaker impla	antation	
B	SEV	Pe	erma BEN	nen [.]	t pac	emaker impla		
B Study or Subgroup	SEV Events	Pe ' Total	erma BE\ Events	nen ′ Total	t pac	emaker impla Risk Ratio M-H, Random, 95% CI	Risk Ratio M-H, Random, 95% Cl	
B Study or Subgroup 3.1.1 ACURATE vs SA Barth 2019	SEV Events APIEN	Pe Total	erma BEV Events	nen / Total	t pac	emaker impla Risk Ratio M-H, Random, 95% CI	Risk Ratio M-H, Random, 95% CI	
B Study or Subgroup 3.1.1 ACURATE vs SA Barth 2019 Costa 2018	SEV Events APIEN 39	Pe 7 Total 329 48	BEN BEN Events	NEN / Total 329 48	t pac Weight 7.8%	emaker impla Risk Ratio M-H, Random, 95% CI	Risk Ratio M-H, Random, 95% CI	
B Study or Subgroup 3.1.1 ACURATE vs SA Barth 2019 Costa 2018 Husser 2017	SEV Events APIEN 39 1 29	Pe Total 329 48 311	erma BEV Events 61 4 92	nen 7 Total 329 48 622	t pac Weight 7.8% 1.2% 7.7%	emaker impla Risk Ratio M-H, Random, 95% CI 0.64 [0.44, 0.93] 0.63 [0.42, 0.94]	Risk Ratio M-H, Random, 95% CI	
B Study or Subgroup 3.1.1 ACURATE vs SA Barth 2019 Costa 2018 Husser 2017 Lanz 2019	SEV Events APIEN 39 1 29 37	Pe 7 Total 329 48 311 368	BEV Events 61 4 92 34	NEN 7 Total 329 48 622 364	t pac <u>Weight</u> 7.8% 1.2% 7.7% 7.3%	emaker impla Risk Ratio M-H, Random, 95% Cl 0.64 [0.44, 0.93] 0.25 [0.03, 2.16] 0.63 [0.42, 0.94] 1.08 [0.69, 1.68]	Risk Ratio M-H, Random, 95% CI	
B Study or Subgroup 3.1.1 ACURATE vs SA Barth 2019 Costa 2018 Husser 2017 Lanz 2019 Mauri 2017	SEV Events APIEN 39 1 29 37 11	Pe 7 Total 329 48 311 368 92	BEV BEV Events 61 4 92 34 14	NEN 7 Total 329 48 622 364 92	t pac <u>Weight</u> 7.8% 1.2% 7.7% 7.3% 5.2%	emaker impla Risk Ratio M-H, Random, 95% CI 0.64 [0.44, 0.93] 0.25 [0.03, 2.16] 0.63 [0.42, 0.94] 1.08 [0.69, 1.68] 0.79 [0.38, 1.64]	Risk Ratio M-H, Random, 95% CI	
B 3.1.1 ACURATE vs SA Barth 2019 Costa 2018 Husser 2017 Lanz 2019 Mauri 2017 Pellegrini 2023	SEV Events APIEN 39 1 29 37 11 33	Pe 7 70tal 329 48 311 368 92 406	Events 61 4 92 34 14 43	nen 7 Total 329 48 622 364 92 419	Weight 7.8% 1.2% 7.7% 7.3% 5.2% 7.4%	emaker impla Risk Ratio М-H, Random, 95% СI 0.64 [0.44, 0.93] 0.25 [0.03, 2.16] 0.63 [0.42, 0.94] 1.08 [0.69, 1.68] 0.79 [0.38, 1.64] 0.79 [0.51, 1.22]	Risk Ratio M-H, Random, 95% CI	
B Study or Subgroup 3.1.1 ACURATE vs SA Barth 2019 Costa 2018 Husser 2017 Lanz 2019 Mauri 2017 Pellegrini 2023 Schaefer 2017	SEV Events 39 1 29 37 11 13 33 11	Pe Total 329 48 311 368 92 406 104	BEVENTS 61 4 92 34 14 43 17	nen 7 Total 329 48 622 364 92 419 104	Weight 7.8% 1.2% 7.7% 7.3% 5.2% 7.4% 5.4%	етакет impla Risk Ratio М-H, Random, 95% СІ 0.64 [0.44, 0.93] 0.25 [0.03, 2.16] 0.63 [0.42, 0.94] 1.08 [0.69, 1.68] 0.79 [0.38, 1.64] 0.79 [0.51, 1.22] 0.65 [0.32, 1.31]	Risk Ratio M-H, Random, 95% CI	
B Study or Subgroup 3.1.1 ACURATE vs SA Barth 2019 Costa 2018 Husser 2017 Lanz 2019 Mauri 2017 Pellegrini 2023 Schaefer 2017 Subtotal (95% Cl)	SEV Events APIEN 39 1 29 37 11 33 11	Pe Total 329 48 311 368 92 406 104 1658	BEVENTS 61 4 92 34 14 43 17	nen 7 Total 329 48 622 364 92 419 104 1978	Weight 7.8% 1.2% 7.7% 7.3% 5.2% 7.4% 5.4% 41.9%	етакет impla Risk Ratio М-H, Random, 95% СІ 0.64 [0.44, 0.93] 0.25 [0.03, 2.16] 0.63 [0.42, 0.94] 1.08 [0.69, 1.68] 0.79 [0.38, 1.64] 0.79 [0.38, 1.64] 0.79 [0.32, 1.31] 0.73 [0.61, 0.89]	Antation Risk Ratio M-H, Random, 95% CI	
B 3.1.1 ACURATE vs SA Barth 2019 Costa 2018 Husser 2017 Lanz 2019 Mauri 2017 Pellegrini 2023 Schaefer 2017 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = Test for overall effect:	SEV Events SPIEN 39 37 11 33 11 161 \$ 0.00; Cf \$ Z = 3.2	Pe Total 329 48 311 368 92 406 104 1658 hi ² = 5. 1 (P = C	Events 61 4 92 34 14 43 17 265 21, df = 0.001)	Total 329 48 622 364 92 419 104 1978 6 (P =	t pac weight 7.8% 1.2% 7.3% 5.2% 7.4% 5.4% 41.9% 0.52); I ² =	emaker impla Risk Ratio М-H, Random, 95% СІ 0.64 [0.44, 0.93] 0.25 [0.03, 2.16] 0.63 [0.42, 0.94] 1.08 [0.69, 1.68] 0.79 [0.38, 1.64] 0.79 [0.51, 1.22] 0.65 [0.32, 1.31] 0.73 [0.61, 0.89]	Risk Ratio M-H, Random, 95% CI	
B Study or Subgroup 3.1.1 ACURATE vs SA Barth 2019 Costa 2018 Husser 2017 Lanz 2019 Mauri 2017 Pellegrini 2023 Schaefer 2017 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: 3.1.2 Evolut vs SAPIE Costn 2012	SEV Events APIEN 39 11 29 37 11 33 11 161 : 0.00; CF : Z = 3.2 :N	Pe <u>Total</u> 329 48 311 368 92 406 104 1658 hi ² = 5. 1 (P = C	Events 61 4 92 34 14 43 17 265 21, df = 0.001)	Total 329 48 622 364 92 419 104 1978 6 (P =	Weight 7.8% 1.2% 7.7% 7.7% 5.2% 7.4% 5.4% 41.9 % 0.52); l ² =	emaker impla Risk Ratio M-H, Random, 95% Cl 0.64 [0.44, 0.93] 0.25 [0.03, 2.16] 0.63 [0.42, 0.94] 1.08 [0.69, 1.64] 0.79 [0.51, 1.22] 0.65 [0.32, 1.31] 0.73 [0.61, 0.89] = 0%	Antation Risk Ratio M-H, Random, 95% CI	
B 3.1.1 ACURATE vs SA Barth 2019 Costa 2018 Husser 2017 Lanz 2019 Mauri 2017 Pellegrini 2023 Schaefer 2017 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = Test for overall effect: 3.1.2 Evolut vs SAPIE Costa 2018 Costa 2022	SEV Events SPIEN 39 1 29 37 11 33 11 161 0.00; Cf Z = 3.2 SN 8 122 8 122 125 125 125 125 125 125 125	Pe Total 329 48 311 368 92 406 104 1658 hi ² = 5. 1 (P = C 48 6° ²	Events 61 4 92 34 14 43 17 265 21, df = 0.001)	Total 329 48 622 364 92 419 104 1978 6 (P =	t pac Weight 7.8% 1.2% 7.7% 5.2% 7.4% 5.4% 41.9% 0.52); I ² = 3.2%	emaker impla Risk Ratio M-H, Random, 95% Cl 0.64 [0.44, 0.93] 0.25 [0.03, 2.16] 0.63 [0.42, 0.94] 1.08 [0.69, 1.68] 0.79 [0.38, 1.64] 0.79 [0.51, 1.22] 0.65 [0.32, 1.31] 0.73 [0.61, 0.89] = 0%	Antation Risk Ratio M-H, Random, 95% CI	
B 3.1.1 ACURATE vs SA Barth 2019 Costa 2018 Husser 2017 Lanz 2019 Mauri 2017 Pellegrini 2023 Schaefer 2017 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = Test for overall effect: 3.1.2 Evolut vs SAPIE Costa 2018 Costa 2022 Einkeltenin 2018	SEV Events PIEN 39 1 29 37 11 33 11 161 : 0.00; CF : Z = 3.2 : N 8 122 21 21	Pe Total 329 48 311 368 92 406 104 1658 hi ² = 5. 1 (P = C 48 683 126	Events 61 4 92 34 14 43 17 265 21, df = 0.001) 4 69	Total 329 48 622 364 92 419 104 1978 6 (P = 48 683 126	t pac weight 7.8% 1.2% 7.7% 7.3% 5.2% 7.4% 5.4% 41.9% 0.52); I ² = 3.2% 8.5% 6.1%	emaker impla Risk Ratio M-H, Random, 95% CI 0.64 [0.44, 0.93] 0.25 [0.03, 2.16] 0.63 [0.42, 0.94] 1.08 [0.69, 1.68] 0.79 [0.38, 1.64] 0.79 [0.51, 1.22] 0.65 [0.32, 1.31] 0.73 [0.61, 0.89] = 0%	Antation Risk Ratio M-H, Random, 95% CI	
B 3.1.1 ACURATE vs SA Barth 2019 Costa 2018 Husser 2017 Lanz 2019 Mauri 2017 Pellegrini 2023 Schaefer 2017 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = Test for overall effect: 3.1.2 Evolut vs SAPIE Costa 2018 Costa 2022 Finkelstein 2018 Hase 2020	SEV Events PIEN 39 1 29 37 11 33 11 161 5.2 = 3.2 5. 8 8 122 21 11	Pe (Total 329 48 311 368 92 406 406 41 1658 10 (P = C 48 683 126 69	BEV Events 61 4 92 34 14 14 13 17 265 21, df = 0.001) 4 69 16 7	Nen 329 48 622 364 92 419 1978 6 (P = 48 683 126 6	t pac Weight 7.8% 1.2% 7.3% 5.2% 7.4% 5.4% 41.9% 0.52); I ² = 3.2% 8.5% 6.1% 4.3%	emaker impla Risk Ratio M-H, Random, 95% CI 0.64 [0.44, 0.93] 0.25 [0.03, 2.16] 0.63 [0.42, 0.94] 1.08 [0.69, 1.68] 0.79 [0.38, 1.64] 0.79 [0.51, 1.22] 0.65 [0.32, 1.31] 0.73 [0.61, 0.89] = 0% 2.00 [0.65, 6.20] 1.77 [1.34, 2.33] 1.31 [0.72, 2.40] 1.57 [0.65, 3.81]	Antation Risk Ratio M-H, Random, 95% CI	
B Study or Subgroup 3.1.1 ACURATE vs SA Barth 2019 Costa 2018 Husser 2017 Lanz 2019 Mauri 2017 Pellegrini 2023 Schaefer 2017 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = Test for overall effect: 3.1.2 Evolut vs SAPIE Costa 2018 Costa 2022 Finkelstein 2018 Hase 2020 Mangieri 2020	SEV Events VPIEN 39 1 29 37 11 33 11 161 5 0.00; Cf 5 Z = 3.2 5 N 8 122 21 11 10	Pe ' Total 329 48 311 368 92 406 104 1658 hi ² = 5. 1 (P = C 48 683 126 69 70	Events 61 4 92 34 14 43 17 265 21, df = 0.001) 4 69 16 7 7	nen ' Total 329 48 622 364 492 419 104 1978 6 (P = 48 683 126 69 70	t pac weight 7.8% 1.2% 7.7% 7.3% 5.2% 7.4% 41.9% 0.52); I ² = 3.2% 8.5% 6.1% 4.3% 5.0%	emaker impla Risk Ratio M-H, Random, 95% CI 0.64 [0.44, 0.93] 0.25 [0.03, 2.16] 0.63 [0.42, 0.94] 1.08 [0.69, 1.68] 0.79 [0.38, 1.64] 0.79 [0.51, 1.22] 0.65 [0.32, 1.31] 0.73 [0.61, 0.89] = 0% 2.00 [0.65, 6.20] 1.77 [1.34, 2.33] 1.31 [0.72, 2.40] 1.57 [0.65, 3.81] 0.39 [0.39, 1.80]	Antation Risk Ratio M-H, Random, 95% CI	
B Study or Subgroup 3.1.1 ACURATE vs SA Barth 2019 Costa 2018 Husser 2017 Lanz 2019 Mauri 2017 Pellegrini 2023 Schaefer 2017 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = Test for overall effect: 3.1.2 Evolut vs SAPIE Costa 2018 Costa 2022 Finkelstein 2018 Hase 2020 Mangieri 2020 Potratz 2022	SEV Events SPIEN 39 1 29 37 11 33 11 161 0.00; Cl 2 = 3.2: SN 8 122 21 11 10 24 4 21 21 11 21 21 21 21 22 21 21	Pe ' Total 329 48 311 368 92 406 104 1658 hi ² = 5. 1 (P = C 48 683 126 69 970 170	Events 61 4 92 34 14 43 17 265 21, df = 0.001) 4 69 9 16 7 12 21	nen 329 48 622 364 92 419 104 1978 6 (P = 48 683 126 69 70 170	t pac Weight 7.8% 1.2% 7.7% 7.3% 5.2% 7.4% 5.2% 7.4% 5.4% 41.9% 0.52); I ² = 3.2% 8.5% 6.1% 4.3% 5.0% 6.5%	emaker impla Risk Ratio M-H, Random, 95% Cl 0.64 [0.44, 0.93] 0.25 [0.03, 2.16] 0.63 [0.42, 0.94] 1.08 [0.69, 1.68] 0.79 [0.38, 1.64] 0.79 [0.51, 1.22] 0.65 [0.32, 1.31] 0.73 [0.61, 0.89] = 0% 2.00 [0.65, 6.20] 1.77 [1.34, 2.33] 1.31 [0.72, 2.40] 1.57 [0.65, 3.81] 0.83 [0.39, 1.80] 1.41 [0.66, 1.97]	Antation Risk Ratio M-H, Random, 95% CI	
B Study or Subgroup 3.1.1 ACURATE vs SA Barth 2019 Costa 2018 Husser 2017 Lanz 2019 Mauri 2017 Pellegrini 2023 Schaefer 2017 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = Test for overall effect: 3.1.2 Evolut vs SAPIE Costa 2018 Costa 2022 Finkelstein 2018 Hase 2020 Mangieri 2020 Potratz 2022 Rheude 2022	SEV Events SPIEN 39 1 29 37 11 33 11 161 0.00; Cl Z = 3.2 SN 8 122 21 11 10 24 71	Pc (* Total 329 48 311 368 92 406 104 1658 107 48 683 126 69 70 170 467 467 467 467 467 467 467 467	Events 61 4 92 34 14 43 17 265 21, df = 0.001) 4 69 16 7 12 21 39	nen (Total 329 48 622 364 92 419 104 1978 6 (P = 48 683 126 69 70 170 70 170	t pac weight 7.8% 1.2% 7.7% 7.3% 5.2% 7.4% 5.4% 41.9% 0.52); 1 ² = 3.2% 8.5% 6.1% 5.0% 6.5% 7.8%	emaker impla Risk Ratio M-H, Random, 95% CI 0.64 [0.44, 0.93] 0.25 [0.03, 2.16] 0.63 [0.42, 0.94] 1.08 [0.69, 1.68] 0.79 [0.38, 1.64] 0.79 [0.51, 1.22] 0.65 [0.32, 1.31] 0.73 [0.61, 0.89] = 0% 2.00 [0.655, 6.20] 1.77 [1.34, 2.33] 1.31 [0.72, 2.40] 1.57 [0.65, 3.81] 0.83 [0.39, 1.80] 1.14 [0.66, 1.97] 1.82 [1.26, 2.63]	Antation Risk Ratio M-H, Random, 95% CI	
B Study or Subgroup 3.1.1 ACURATE vs SA Barth 2019 Costa 2018 Husser 2017 Lanz 2019 Mauri 2017 Pellegrini 2023 Schaefer 2017 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = Test for overall effect: 3.1.2 Evolut vs SAPIE Costa 2018 Costa 2022 Finkelstein 2018 Hase 2020 Mangieri 2020 Potratz 2022 Rheude 2022 Thiele 2021	SEV Events PIEN 39 1 29 37 11 33 11 61 5.0.0; CF 5.7 = 3.2 5.8 8 122 21 11 10 24 71 49	Pc ' Total 329 48 311 368 92 406 104 1658 92 406 104 1658 116 68 31266 69 70 170 467 213	Events 61 4 92 34 14 43 17 265 21, df = 0.001) 4 69 16 7 12 21 39 41	nen 329 48 622 364 92 419 104 1978 6 (P = 48 683 126 69 70 170 467 214	t pac weight 7.8% 1.2% 7.7% 7.3% 5.4% 41.9% 0.52); l ² = 3.2% 8.5% 6.1% 4.3% 5.0% 6.5% 7.8%	emaker impla Risk Ratio M-H, Random, 95% CI 0.64 [0.44, 0.93] 0.25 [0.03, 2.16] 0.63 [0.42, 0.94] 1.08 [0.69, 1.68] 0.79 [0.38, 1.64] 0.79 [0.51, 1.22] 0.65 [0.32, 1.31] 0.73 [0.61, 0.89] = 0% 2.00 [0.65, 6.20] 1.77 [1.34, 2.33] 1.31 [0.72, 2.40] 1.57 [0.65, 3.81] 0.83 [0.39, 1.80] 1.14 [0.66, 1.97] 1.82 [1.26, 2.63] 1.20 [0.83, 1.74]	Antation Risk Ratio M-H, Random, 95% CI	
B 3.1.1 ACURATE vs SA Barth 2019 Costa 2018 Husser 2017 Lanz 2019 Mauri 2017 Pellegrini 2023 Schaefer 2017 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = Test for overall effect: 3.1.2 Evolut vs SAPIE Costa 2018 Costa 2022 Finkelstein 2018 Hase 2020 Mangieri 2020 Potratz 2022 Rheude 2022 Thiele 2021 Vlastra 2018	SEV Events PIEN 39 1 29 37 11 33 11 161 5.2 = 3.2 5. 8 8 122 21 11 10 24 71 10 24 71 10 8 122 21 11 10 10 8 122 121 11 10 129 129 129 129 129 129 129 129 129 129	Pee ' Total 329 48 311 368 92 406 104 1658 1658 126 69 70 170 467 70 170 170 170	Events 61 4 92 34 14 43 17 265 21, df = 0.001) 4 69 16 7 7 12 21 39 41 89	nen 329 48 622 364 492 419 104 1978 6 (P = 48 683 1266 69 70 170 467 70 170 141 1091	t pac weight 7.8% 1.2% 7.3% 5.2% 7.4% 5.4% 41.9% 0.52); l ² = 3.2% 8.5% 6.1% 4.3% 5.0% 6.5% 7.8% 7.8% 7.8% 7.8% 7.8% 7.8% 7.8% 7.8% 7.8% 7.8% 7.8% 7.4% 7.4% 7.4% 7.3% 7.4%	Emaker impla Risk Ratio M-H, Random, 95% CI 0.64 [0.44, 0.93] 0.25 [0.03, 2.16] 0.63 [0.42, 0.94] 1.08 [0.69, 1.68] 0.79 [0.38, 1.64] 0.79 [0.51, 1.22] 0.65 [0.32, 1.31] 0.73 [0.61, 0.89] = 0% 2.00 [0.65, 6.20] 1.77 [1.34, 2.33] 1.31 [0.72, 2.40] 1.57 [0.65, 3.81] 0.83 [0.39, 1.80] 1.14 [0.66, 1.97] 1.82 [1.26, 2.63] 1.20 [0.83, 1.74] 2.03 [1.60, 2.58]	Antation Risk Ratio M-H, Random, 95% CI	
B Study or Subgroup 3.1.1 ACURATE vs SA Barth 2019 Costa 2018 Husser 2017 Lanz 2019 Mauri 2017 Pellegrini 2023 Schaefer 2017 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: 3.1.2 Evolut vs SAPHE Costa 2018 Costa 2022 Finkelstein 2018 Hase 2020 Mangieri 2020 Potratz 2022 Rheude 2022 Thiele 2021 Vlastra 2018 Subtotal (95% CI)	SEV Events SPIEN 39 12 29 37 11 33 11 161 5.00; Cf 2 = 3.2; 21 11 10 24 471 49 186	Pe (Total 329 48 311 368 92 406 1058 10F = C 48 683 126 69 70 170 467 122 2968	Events 61 4 92 34 14 43 17 265 21, df = 0.001) 4 69 16 7 12 21 39 41 89	Total 329 48 622 364 49 2 419 104 1978 6 (P = 48 683 126 699 70 170 467 214 1091 2938	t pac Weight 7.8% 1.2% 7.7% 7.3% 5.2% 7.4% 5.4% 41.9% 0.52); l ² = 3.2% 8.5% 6.1% 4.3% 5.0% 6.5% 7.8% 7.8% 7.8% 7.8% 7.8% 5.4% 5.5%	emaker impla Risk Ratio M-H, Random, 95% Cl 0.64 [0.44, 0.93] 0.25 [0.03, 2.16] 0.63 [0.42, 0.94] 1.08 [0.69, 1.68] 0.79 [0.38, 1.64] 0.79 [0.51, 1.22] 0.65 [0.32, 1.31] 0.73 [0.61, 0.89] = 0% 2.00 [0.65, 6.20] 1.77 [1.34, 2.33] 1.31 [0.72, 2.40] 1.57 [0.65, 3.81] 0.83 [0.39, 1.80] 1.42 [1.26, 2.63] 1.20 [0.83, 1.74] 2.03 [1.60, 2.58] 1.57 [1.31, 1.88]	Antation Risk Ratio M-H, Random, 95% CI	
B Study or Subgroup 3.1.1 ACURATE vs SA Barth 2019 Costa 2018 Husser 2017 Lanz 2019 Mauri 2017 Pellegrini 2023 Schaefer 2017 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: 3.1.2 Evolut vs SAPIE Costa 2018 Costa 2022 Finkelstein 2018 Hase 2020 Mangieri 2020 Potratz 2022 Rheude 2022 Thiele 2021 Vlastra 2018 Subtotal (95% CI) Total events	SEV Events SPIEN 39 1 29 37 11 33 11 161 c.0.00; CC c Z = 3.2: SN 8 122 21 11 10 24 49 186 502	Pee 'Total 329 48 311 368 92 406 104 1658 61 104 1658 633 126 69 70 0 467 213 1122 22968	Events 61 4 92 34 14 43 17 265 21, df = 0.001) 4 69 16 7 12 21 39 41 89 298	Total 329 48 622 364 92 419 104 1978 6 (P = 48 863 3126 69 70 170 467 214 1091	t pac Weight 7.8% 1.2% 7.7% 5.2% 7.4% 5.4% 41.9% 0.52); I ² = 3.2% 8.5% 6.1% 4.3% 5.0% 6.5% 7.8% 7.8% 7.9% 8.7%	emaker impla Risk Ratio M-H, Random, 95% Cl 0.64 [0.44, 0.93] 0.25 [0.03, 2.16] 0.63 [0.42, 0.94] 1.08 [0.69, 1.68] 0.79 [0.38, 1.64] 0.79 [0.38, 1.64] 0.79 [0.51, 1.22] 0.65 [0.32, 1.31] 0.73 [0.61, 0.89] = 0% 2.00 [0.65, 6.20] 1.77 [1.34, 2.33] 1.31 [0.72, 2.40] 1.57 [0.65, 3.81] 0.83 [0.39, 1.80] 1.14 [0.66, 1.97] 1.82 [1.26, 2.63] 1.20 [0.83, 1.74] 2.03 [1.60, 2.58] 1.57 [1.31, 1.88]	Antation Risk Ratio M-H, Random, 95% CI	
B Study or Subgroup 3.1.1 ACURATE vs SA Barth 2019 Costa 2018 Husser 2017 Lanz 2019 Mauri 2017 Pellegrini 2023 Schaefer 2017 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = Test for overall effect: 3.1.2 Evolut vs SAPIE Costa 2018 Costa 2022 Finkelstein 2018 Hase 2020 Mangieri 2020 Potratz 2022 Rheude 2022 Thiele 2021 Vlastra 2018 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = Test for overall effect:	SEV Events VPIEN 39 1 29 37 11 33 11 161 50.00; CH 2 = 3.2 3N 8 122 211 101 24 711 10 24 711 10 24 71 11 10 24 71 11 10 24 71 11 10 24 71 11 10 24 71 11 10 24 75 25 25 25 25 25 25 25 25 25 2	Pee ' Total 329 48 311 368 92 406 104 1658 92 406 104 1658 92 406 104 1658 92 406 104 1658 92 406 69 70 170 48 683 126 69 70 172 2968 hi ² = 12 2968 hi ² = 12 9 (P < C	Events 61 4 92 34 14 43 17 265 21, df = 0.001) 4 69 166 7 12 21 39 41 89 218 1.76, df = 0.0001)	nen 329 48 622 364 92 419 104 1978 6 (P = 48 683 126 69 70 170 467 214 1091 2938 = 8 (P =	t pac Weight 7.8% 1.2% 7.7% 7.3% 5.2% 7.4% 5.4% 41.9% 0.52); I ² = 3.2% 8.5% 6.1% 4.3% 5.0% 6.5% 7.8% 7.8% 5.2% 5.2% 8.5% 6.1% 4.3% 5.0% 6.1% 5.2% 5.2% 5.2% 7.4% 5.2% 5.2% 7.4% 5.2% 5.2% 5.2% 7.4% 5.2% 7.4% 5.2% 7.4% 5.2% 7.4% 5.2% 7.4% 5.2% 7.4% 5.2% 7.4% 5.2% 7.4% 5.2% 7.8% 7.9% 7.8%	Emaker impla Risk Ratio M-H, Random, 95% CI 0.64 [0.44, 0.93] 0.25 [0.03, 2.16] 0.63 [0.42, 0.94] 1.08 [0.69, 1.68] 0.79 [0.38, 1.64] 0.79 [0.38, 1.64] 0.79 [0.51, 1.22] 0.65 [0.32, 1.31] 0.73 [0.61, 0.89] = 0% 2.00 [0.65, 6.20] 1.77 [1.34, 2.33] 1.31 [0.72, 2.40] 1.57 [0.65, 3.81] 0.83 [0.39, 1.80] 1.14 [0.66, 1.97] 1.82 [1.26, 2.63] 1.20 [0.83, 1.74] 2.03 [1.60, 2.58] 1.57 [1.31, 1.88] = 32%	Antation Risk Ratio M-H, Random, 95% CI	
B Study or Subgroup 3.1.1 ACURATE vs SA Barth 2019 Costa 2018 Husser 2017 Lanz 2019 Mauri 2017 Pellegrini 2023 Schaefer 2017 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: 3.1.2 Evolut vs SAPIE Costa 2018 Costa 2022 Finkelstein 2018 Hase 2020 Mangieri 2020 Potratz 2022 Rheude 2022 Thiele 2021 Vlastra 2018 Subtotal (95% CI) Total (95% CI)	SEV Events SPIEN 39 1 29 37 11 33 11 161 5.0.00; Cl Z = 3.2: SN 8 122 21 11 10 24 71 11 10 24 71 11 29 18 502 502; Cl Z = 4.8; 502 2 = 4.8; 502 502 502 502 502 502 502 502	Pc (* Total 329 48 311 368 92 406 104 1658 92 406 104 1658 107 107 107 107 107 107 107 107	Events 61 4 92 34 14 43 17 265 21, df = 0,001) 4 69 16 7 12 21 39 41 89 298 1.76, df = 0,0001)	nen 329 48 622 364 92 419 104 1978 6 (P = 48 6 69 70 170 70 170 467 214 1091 2938 = 8 (P = 4916	t pac Weight 7.8% 1.2% 7.7% 7.3% 5.2% 7.4% 5.4% 41.9% 0.52); ² = 3.2% 8.5% 6.1% 7.8% 7.8% 7.8% 5.2% 8.5% 6.1% 7.8% 5.2% 8.5% 6.1% 7.8% 5.2% 8.5% 6.1% 7.8% 5.2% 8.5% 6.1% 7.8% 5.2% 8.5% 6.1% 7.8% 5.2% 7.4% 5.2% 8.5% 6.1% 7.8% 7.8% 7.8% 7.4% 5.2% 8.5% 6.1% 7.8% 7.8% 7.8% 7.8% 7.4% 5.2% 8.5% 6.1% 7.8% 7.9% 7.8%	Emaker impla Risk Ratio M-H, Random, 95% CI 0.64 [0.44, 0.93] 0.25 [0.03, 2.16] 0.63 [0.42, 0.94] 1.08 [0.69, 1.68] 0.79 [0.38, 1.64] 0.79 [0.51, 1.22] 0.65 [0.32, 1.31] 0.73 [0.61, 0.89] = 0% 2.00 [0.65, 6.20] 1.77 [1.34, 2.33] 1.31 [0.72, 2.40] 1.57 [0.65, 3.81] 0.83 [0.39, 1.80] 1.14 [0.66, 1.97] 1.82 [1.26, 2.63] 1.20 [0.83, 1.74] 2.03 [1.60, 2.58] 1.57 [1.31, 1.88] = 32% 1.10 [0.86, 1.41]	Antation Risk Ratio M-H, Random, 95% CI	
B Study or Subgroup 3.1.1 ACURATE vs SA Barth 2019 Costa 2018 Husser 2017 Lanz 2019 Mauri 2017 Pellegrini 2023 Schaefer 2017 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: 3.1.2 Evolut vs SAPIE Costa 2018 Costa 2022 Finkelstein 2018 Hase 2020 Mangieri 2020 Potratz 2022 Rheude 2022 Thiele 2021 Vlastra 2018 Subtotal (95% CI) Total events	SEV Events PIEN 39 1 29 37 11 33 11 61 5.2 = 3.2 5.N 8 122 21 11 10 24 7 7 11 10 24 7 11 10 24 502 502 502 50.2; Cf 50 2 = 4.89 663	Pec 'Total 329 48 311 368 92 406 104 1658 92 406 104 1658 639 70 170 467 22968 hi ² = 1: 9 (P < C 4626	Events 61 4 92 34 14 43 17 265 21, df = 0.001) 4 69 16 7 12 21 39 41 89 298 1.76, df = 0.0001)	nen 329 48 622 364 92 419 104 1978 6 (P = 48 683 126 69 70 170 467 70 177 214 1091 2938 = 8 (P = 4916	t pac weight 7.8% 1.2% 7.7% 7.3% 5.4% 41.9% 0.52); l ² = 3.2% 8.5% 6.1% 4.3% 5.0% 6.5% 7.8% 7.9% 8.7% 58.1% = 0.16); l ²	Emaker impla Risk Ratio M-H, Random, 95% CI 0.64 [0.44, 0.93] 0.25 [0.03, 2.16] 0.63 [0.42, 0.94] 1.08 [0.69, 1.68] 0.79 [0.38, 1.64] 0.79 [0.51, 1.22] 0.65 [0.32, 1.31] 0.73 [0.61, 0.89] = 0% 2.00 [0.65, 6.20] 1.77 [1.34, 2.33] 1.31 [0.72, 2.40] 1.57 [0.65, 3.81] 0.83 [0.39, 1.80] 1.14 [0.66, 1.97] 1.82 [1.26, 2.63] 1.20 [0.83, 1.74] 2.03 [1.60, 2.58] 1.57 [1.31, 1.88] = 32% 1.10 [0.86, 1.41]	Antation Risk Ratio M-H, Random, 95% CI	
B Study or Subgroup 3.1.1 ACURATE vs SA Barth 2019 Costa 2018 Husser 2017 Lanz 2019 Mauri 2017 Pellegrini 2023 Schaefer 2017 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: 3.1.2 Evolut vs SAPIE Costa 2018 Costa 2022 Finkelstein 2018 Hase 2020 Mangieri 2020 Potratz 2022 Rheude 2022 Thiele 2021 Vlastra 2018 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: Total (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect:	SEV Events SPIEN 39 12 29 37 11 33 11 161 c.0.00; Cl; Z = 3.2; SN 8 122 21 11 10 24 71 10 24 71 10 24 502 c.2 c.2 c.2 c.2 c.2 c.2 c.2 c.	Pe ($'$ Total 329 48 311 368 92 406 104 1658 683 3126 699 700 467 213 1122 2968 hi ² = 5. (P < C 4626 hi ² = 6. 5 (P < C	Events Events 61 4 92 34 14 43 17 265 21, df = 0.001) 4 69 16 69 16 7 12 21 39 41 89 298 1.76, df = 0.00001) 563 3.95, df = 0.46)	nen 329 48 622 364 92 419 104 1978 6 (P = 48 683 126 69 70 167 214 1091 2938 8 (P = 4916 5 (P)	t pac Weight 7.8% 1.2% 7.7% 5.2% 7.4% 5.5% 7.8% 7.9% 7.8	emaker impla Risk Ratio M-H, Random, 95% Cl 0.64 [0.44, 0.93] 0.25 [0.03, 2.16] 0.63 [0.42, 0.94] 1.08 [0.69, 1.68] 0.79 [0.38, 1.64] 0.79 [0.38, 1.64] 0.79 [0.31, 1.22] 0.65 [0.32, 1.31] 0.73 [0.61, 0.89] = 0% 2.00 [0.65, 6.20] 1.77 [1.34, 2.33] 1.31 [0.72, 2.40] 1.57 [0.65, 3.81] 0.83 [0.39, 1.80] 1.44 [0.66, 1.97] 1.82 [1.26, 2.63] 1.20 [0.83, 1.74] 2.03 [1.60, 2.58] 1.57 [1.31, 1.88] = 32% 1.10 [0.86, 1.41]	Antation Risk Ratio M-H, Random, 95% CI	

Fig. 4 Forest plots. (A) Stroke. (B) Permanent pacemaker implantation

Fig. 5 Forest plots. (A) Major or life-threatening bleeding. (B) major vascular complications

Fig. 6 Forest plots. (A) Acute kidney injury. (B) Coronary artery obstruction

A		Mild	parav	valvular leak	age
	SEV	BEV		Risk Ratio	Risk Ratio
Study or Subgroup	Events Tota	Events Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% Cl
9.1.1 ACURATE vs SA	APIEN				
Barth 2019	118 316	68 323	11.9%	1.77 [1.37, 2.29]	-
Costa 2018	22 48	3 9 48	3.7%	2.44 [1.26, 4.75]	
Mauri 2017	50 92	2 48 92	11.4%	1.04 [0.79, 1.37]	+
Pellegrini 2023	155 472	94 472	13.2%	1.65 [1.32, 2.06]	+
Schaefer 2017	54 104	32 104	9.1%	1.69 [1.20, 2.38]	-
Subtotal (95% CI)	1032	2 1039	49.2%	1.57 [1.24, 2.00]	•
Total events	399	251			
Heterogeneity: Tau ² =	= 0.05; Chi ² = 1	12.00, $df = 4$ (P	= 0.02); ²	² = 67%	
Test for overall effect	: Z = 3.72 (P =	0.0002)			
9.1.2 Evolut vs SAPIE	EN .				
Costa 2018	22 48	3 9 48	3.7%	2.44 [1.26, 4.75]	
Costa 2022	263 683	8 137 683	15.0%	1.92 [1.61, 2.29]	-
Hase 2020	33 69	25 69	7.6%	1.32 [0.89, 1.97]	-
Potratz 2022	57 170) 46 170	9.6%	1.24 [0.90, 1.72]	
Rheude 2022	212 467	128 467	14.9%	1.66 [1.39, 1.98]	1 T
Subtotal (95% CI)	1437	1437	50.8%	1.63 [1.36, 1.96]	•
Total events	587	345			
Heterogeneity: Tau ² =	= 0.02; Chi ² = 8	8.23, df = 4 (P =	0.08); l ² :	= 51%	
Test for overall effect	: Z = 5.27 (P <	0.00001)			
Total (95% CI)	2469	2476	100.0%	1.59 [1.38, 1.84]	•
Total events	986	596			
Heterogeneity: $Tau^2 =$	= 0.03: Chi ² = 2	21.20, df = 9 (P	$= 0.01$): $ ^{2}$	² = 58%	
Test for overall effect	Z = 6.48 (P <	0.00001)			0.01 0.1 1 10 100
Test for subaroup dif	ferences: Chi ² :	= 0.06, df $= 1$ (P	P = 0.81).	$I^2 = 0\%$	Favours SEV Favours BEV
В	Mode	erate to	seve	re paravalvu	ılar leakage

Moderate to severe paravalvular leakage

	SEV	,	BE\	/		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
9.2.1 ACURATE vs SA	PIEN						
Barth 2019	38	316	10	323	11.6%	3.88 [1.97, 7.66]	
Costa 2018	0	48	0	48		Not estimable	
Husser 2017	15	311	11	622	10.5%	2.73 [1.27, 5.87]	
Lanz 2019	34	361	10	363	11.4%	3.42 [1.72, 6.82]	
Mauri 2017	4	92	3	92	4.9%	1.33 [0.31, 5.79]	
Pellegrini 2023	3	472	5	472	5.2%	0.60 [0.14, 2.50]	
Schaefer 2017	5	104	2	104	4.3%	2.50 [0.50, 12.60]	
Subtotal (95% CI)		1704		2024	48.0%	2.61 [1.66, 4.10]	•
Total events	99		41				
Heterogeneity: Tau ² =	0.08; Cł	$1i^2 = 6.$	70, df =	5 (P =	0.24); I ² =	= 25%	
Test for overall effect:	Z = 4.15	5 (P < C	0.0001)				
9.2.2 Evolut vs SAPIE	N						
Costa 2018	1	48	0	48	1.3%	3.00 [0.13, 71.85]	
Costa 2022	22	683	16	683	12.1%	1.38 [0.73, 2.60]	
Finkelstein 2018	39	126	34	126	15.3%	1.15 [0.78, 1.69]	
Hase 2020	0	69	0	69		Not estimable	
Mangieri 2020	8	77	0	77	1.7%	17.00 [1.00, 289.47]	
Potratz 2022	5	170	7	170	7.1%	0.71 [0.23, 2.21]	
Rheude 2022	17	466	6	464	8.9%	2.82 [1.12, 7.09]	
Thiele 2021	7	208	3	207	5.6%	2.32 [0.61, 8.86]	
Subtotal (95% CI)		1847		1844	52.0%	1.50 [0.97, 2.31]	◆
Total events	99		66				
Heterogeneity: Tau ² =	0.10; Cł	$1i^2 = 8.$	73, df =	6 (P =	0.19); I ² =	= 31%	
Test for overall effect:	Z = 1.83	B (P = C)).07)				
Total (95% CI)		3551		3868	100.0%	1.95 [1.33, 2.86]	●
Total events	198		107				
Heterogeneity: Tau ² =	0.21; Cł	$ni^2 = 24$	4.68, df =	= 12 (P	= 0.02);	$l^2 = 51\%$	
Test for overall effect:	Z = 3.42	P = 0	0.0006)				Eavours SEV Eavours REV
Test for subgroup diff	erences:	Chi ² =	3.01, df	= 1 (P	= 0.08), I	$^{2} = 66.8\%$	

Fig. 7 Forest plots. (A) Mild paravalvular leak. (B) Moderate to severe paravalvular leak

Data on the incidence of moderate to severe PVL were available in all 14 studies. There were 101/1717 (5.9%) moderate to severe PVL patients in ACURATE SEV, 99/1847 (5.4%) in Evolut SEV, and 107/3874 (2.8%) in SAPIEN BEV. The early incidence of moderate to severe PVL was significantly lower in SAPIEN BEV compared to ACURATE SEV (RR 2.62, 95%CI 1.65 to 4.14, p <0.001, I^2 =27%) or Evolut SEV (RR 1.50, 95%CI 0.97 to 2.31, p=0.07, I^2 =31%; Fig. 7B).

Data on early mean transvalvular gradients (MTG) were provided by 12 studies. Our analysis showed that SAPIEN BEV had higher mean transvalvular gradients than ACURATE SEV (MD -3.77, 95%CI -4.44 to -3.11, p < 0.00001, I²=81%) and Evolut SEV (MD -3.76, 95%CI -4.68 to -2.83, p < 0.00001, I²=87%), but with high heterogeneity (Fig. 8A).

We included six studies in the analysis of effective orifice area (EOA). Our pooled analysis revealed that ACU RATE SEV (MD 0.20, 95%CI 0.12 to 0.29, p < 0.00001, $I^2=87\%$) and Evolut SEV (MD 0.16, 95%CI 0.11 to 0.21, p < 0.00001, $I^2=0\%$) had a significantly larger EOA than SAPIEN BEV (Fig. 8B).

Only four studies provided data on the occurrence of severe patient-prosthesis mismatch (PPM) after TAVR. The results suggested that regardless of the type of SEV, the incidence of severe PPM was significantly lower than that of BEV (RR 0.18, 95%CI 0.10 to 0.33, p < 0.00001, $I^2 = 0\%$; RR 0.35, 95%CI 0.14 to 0.88, p = 0.03, $I^2 = 0\%$; Fig. 8C).

Discussion

In the rapidly evolving field of TAVR technology, there are numerous THV options available, making the decision of which valve to use a daunting task. Presently, there are two primary types of valves: self-expanding valves (SEV) and balloon-expandable valves (BEV). The primary disadvantage of first-generation valves was the relatively large delivery system, which resulted in an increased incidence of vascular complications, a higher need for pacemakers, an elevated rate of paravalvular leak (PVL), and a greater incidence of stroke [30-33]. The new generation of valves aims to address these issues by reducing the outer diameter of the delivery catheter, providing repositionability and retrievability, enabling technical manipulation, and reducing TAVR-related complications (PVL, pacemaker implantation, and stroke). Prior studies have compared the two valves of the first generation [6, 7], but limited data exist comparing the new generation SEV with the BEV.

We conducted a meta-analysis comparing the postoperative outcomes of new generation SEV-TAVR and BEV-TAVR in RCT and PSM studies, including 4678 patients with SEV-TAVR and 4963 patients with BEV-TAVR. Our analysis yielded the following results: (1) No significant difference between SEV and BEV with regard to 30-day and 1-year mortality. (2) At 30-day, ACURATE SEV had a lower incidence of PPI compared to SAPIEN BEV, while Evolut SEV had a higher incidence of PPI compared to SAPIEN BEV. (3) There was no significant difference between the two valves regarding stroke, MLTB, MVC, AKI and CAO. (4) SEV had lower MTG and a larger EOA. (5) SEV was associated with a higher incidence of PVL.

Our study revealed that both ACURATE and Evolut SEV had higher mortality rates compared to SAPIEN valves after TAVR, but there was no significant difference in mortality between the two new generation valves. Generally, perioperative complications and baseline risk are associated with TAVR mortality. However, since our meta-analysis was conducted at the study level without patient-specific data, we cannot determine why SEV is associated with a higher death rate. Moderate to severe PVL is known to be associated with early and long-term mortality after TAVR in patients with aortic stenosis [34– 36]. Our study found a significantly higher risk of PVL in SEV compared to BEV. Further studies are needed to verify the association between mild PVL and mortality in SEV.

Thirty-day stroke is a significant complication after TAVR, and its relationship with THV types remains unclear. Seppelt et al. reported stroke rates of 1.8% and 3.1% at thirty days after TAVR with SEV and BEV, respectively [37]. On the contrary, our research findings revealed that the early stroke incidence rates for Evolut SEV, ACURATE SEV, and SAPIEN BEV were 3.30%, 2.60%, and 1.90%, respectively. However, there was no statistically significant difference in the occurrence of stroke between SEV and BEV. Sensitivity analysis and subgroup analysis results indicate that the RCT conducted by Thiele et al. could be a potential source of heterogeneity [18]. They reported stroke rates of 0.5% and 4.7% for the Evolut group and SAPIEN group, respectively, with the stroke rate in the Evolut group significantly lower than the results of previous studies [24, 29]. Considering the numerous influencing factors, the differences in stroke between BEV and SEV should be cautiously interpreted. A possible explanation is that its larger device design, higher usage rate of balloon expansion, and repositionable and retrievable mechanism contribute to increased friction between the THV and the native aortic valve [29, 38, 39].

The incidence of stroke after TAVR is influenced by various factors. Grossman et al. found that the incidence of post-TAVR stroke varied among different medical centers [40]. As a result of enhanced diagnostic capabilities, comprehensive stroke center (CSC) sites

Fig. 8 Forest plots. (A) Mean transvalvular gradients. (B) Effective orifice area. (C) Severe patient-prosthesis mismatch

exhibited a significantly higher in-hospital incidence of post-TAVR stroke compared to non-CSC sites (CSC: 2.65% vs. non-CSC: 1.15%, p<0.001). On the other hand, the use of cerebral protection devices (CEP) may potentially reduce the incidence of postoperative stroke, but its efficacy has been a subject of debate. A large-scale PROTECTED TAVR RCT reported no significant difference in the occurrence of stroke within 72 h or before discharge between the CEP group and the control group (2.3% vs. 2.9%, P=0.30) [41]. A recent meta-analysis by Wolfrum et al., incorporating four RCT and one PSM study, reported that the use of CEP can reduce the risk of overall stroke and disabling stroke, but it does not decrease the risk of non-disabling stroke [42]. Further large-scale clinical trials may provide more evidence on the effectiveness of CEP in TAVR procedures.

With the use of new-generation devices, the safety and efficacy of TAVR have significantly improved. However, compared to surgical replacement, permanent pacemaker implantation (PPI) remains a common post-procedure complication [43]. Previous studies evaluating TAVR patients with first generation valves showed higher rates of conduction disturbances and PPI in patients receiving the SEV compared with BEV [44-46]. It is noteworthy that our study demonstrated a significant difference in the PPI rate between ACURATE and Evolut, two different SEV devices. Conduction disturbances after valve implantation are primarily due to contact between the prosthetic valve and the left ventricular outflow tract. The depth of valve implantation may be an important influencing factor for post-TAVR PPI. Abdelfattah et al's meta-analysis suggested that greater depth of valve implantation serves as a predictive factor for early PPI and left bundle branch block after TAVR [47]. Similarly, a retrospective study encompassing 1,028 TAVR patients implemented a high-deployment technique (HDT) in 406 patients. The HDT group exhibited decreased rates of 30-day PPI (5.5% vs. 13.1%; *P* < 0.001) [48].

Our research findings revealed that the early PPI rates for ACURATE SEV, Evolut SEV, and SAPIEN BEV were 9.70%, 16.9%, and 11.5%, respectively. The lower risk of PPI associated with ACURATE SEV may be attributed to its large-cell design, resulting in lower radial forces, as well as its top-down deployment mechanism, which minimizes interference with the left ventricular outflow tract during expansion [49]. On the contrary, in Evolut R/PRO, a higher incidence of PPI was observed compared to ACURATE and SAPIEN, possibly due to its frame design, which makes it more susceptible to further protrusion into the left ventricular outflow tract [50]. Nonetheless, through the implementation of Cusp-Overlap technology and new-generation delivery systems, the incidence of PPI with Evolut SEV has experienced a significant decrease.

The CHOICE randomized clinical trial [6] reported the incidence of early major vascular complications of first generation SEV versus BEV (9.9% vs 11.1%). New generation valves focus on improving device technology by modifying valve design and miniaturizing delivery systems, allowing safe use in a wider range of patients and reducing vascular injury [51, 52]. Our meta-analysis found comparable risks of early MVC for SEV and BEV (6.0% vs 6.7%). Because the risk of vascular complications should theoretically depend only on local anatomy and surgical technique [53]. Similarly, our data showed no significant difference between the new generation SEV and BEV regarding the risk of MLTB, AKI, and a decreased incidence compared with the first generation valves.

Coronary artery obstruction is a rare but devastating complication of TAVR. Our study demonstrated a lower incidence of CAO with BEV compared to SEV, but without statistical significance. Ochiai et al. reported the prevalence of CT-defined post-TAVR coronary access unfavorable features when using BEV and SEV (Evolut R/PRO: left coronary artery/right coronary artery=34.8/25.8%; SAPIEN 3: left coronary artery/ right coronary artery=15.7/8.1%) [54]. Unfortunately, the studies included in our analysis did not report the occurrence of postoperative coronary access unfavorable features. TAVR may pose challenges to future coronary access and aortic valve re-interventions in a large cohort of low-risk patients [55]. SAPIEN BEV, with a lower stent frame height, large cells design, and an intraannular valve design, typically allows coronary re-intervention above the valve's outflow tract or through the large cells of the frame. The stent frame height of Evolut SEV extends to the coronary artery ostium with a supraannular valve design, making coronary re-intervention feasible only through the diamond-shaped cells after valve deployment. ACURATE SEV's design with large cells facilitates the passage of guidewires and catheters but sacrifices some radial support strength of the device, making it more challenging in patients with heavily calcified leaflets and potentially increasing the risk of PVL.

Overall, BEV may be more suitable for patients at a higher risk of CAO and who are younger and may require future interventions. The application of coronary protection techniques, such as chimney stenting or BALISICA (Bioprosthetic or native Aortic Scallop Intentional Laceration to prevent Iatrogenic Coronary Artery obstruction during TAVR) technique, can effectively prevent the occurrence of CAO [56]. If SEV valves are chosen, the method of commissural alignment can reduce the occurrence of post-implantation CAO and optimize coronary access, thereby increasing options for future interventions [57, 58].

Previous studies have demonstrated differences in hemodynamic performance between first generation SEV and BEV. The CoreValve SEV, when compared to the SAPIEN BEV, was found to have a significantly lower residual gradient [59]. Both types of new generation valves have shown improved hemodynamic performance. However, our study suggests that the new generation SEV has superior antegrade hemodynamic performance when compared to the new generation BEV. This difference is likely due to the supra-annular position of the SEV leaflets, which allows for lower resistance to left ventricular outflow and gradients [60, 61]. Our study also pooled data on effective orifice area (EOA) or effective orifice area index (EOAi), an indicator that defines patient-prosthesis mismatch (PPM) in patients after TAVR. Prior studies have suggested that PPM is more common in BEV than SEV, while some studies have shown an increase in PPM in the new generation valves compared to the first generation valves [62-64]. However, with the introduction of skirt designs in most new generation valves, particularly double skirt designs [62, 65], the EOA is reduced to a certain extent. We found that the new generation SEV has a larger EOA and lower mean pressure gradients than the new generation BEV. Hemodynamic performance may be the primary cause of structural valve dysfunction (SVD). A retrospective analysis of 300 TAVR patients with first generation valves by Deutsch et al. demonstrated a significant difference in the incidence of SVD between SEV and BEV (CoreValve 11.8% vs SAPIEN 22.6%, p=0.01) [66]. The CHOICE RCT found that the incidence of SVD was higher in SEV than in BEV at 5-year follow-up (6.6% vs 0.0%, p = 0.02). Due to a lack of data, we were unable to compare the incidence of SVD in the new generation valves. Longer follow-up studies are needed to investigate the differences in SVD between the new generation SEV and BEV.

PVL can have a negative impact on clinical outcomes and can even negate the survival benefit of TAVI in patients with moderate or severe PVL [67]. A previous meta-analysis reported that 11.7% of patients treated with first generation valves developed moderate to severe PVL [68]. New generation valves are generally designed to be repositionable and provide a better seal with the native valve, thereby reducing the chance of PVL occurring between the prosthesis and annulus. Kowalewski et al. showed that the incidence of moderate or severe PVL was lower in Evolut R SEV compared to CoreValve SEV (RR 0.55, 95%CI 0.39 to 0.79, p=0.01) [69]. According to a meta-analysis by Ando et al., SAPIEN 3 BEV showed a decrease from 6.9% to 1.6% in moderate and severe PVL [70]. In our study, 5.6% and 2.7% of new-generation SEV and BEV, respectively, had moderate to severe PVL. The lower risk of moderate to severe PVL with BEV may be due to its higher radial force and better adaptation to the aortic valve annulus. Mild PVL was present in 40.3% and 24.5% of BEV and SEV cases, respectively, and further studies are needed to investigate its effect on postoperative outcomes.

Our study has some limitations, the most significant being the predominant inclusion of observational studies in our literature review. Despite incorporating propensity score matching studies to ensure comparable baseline characteristics, they are limited by potential flaws and unidentified biases. Moreover, we observed a high degree of heterogeneity in some of the outcomes. The central valve preference may be an easily overlooked factor when comparing self-expanding and balloon-expanding valves, as shown in a study by Witberg et al., which found worse perioperative outcomes, moderate to severe aortic regurgitation, and 2-year mortality when TAVR was performed with SEV in BEV-dominant centers [71]. Therefore, subgroup analysis based on central valve preference is necessary. Another limitation is that the maximum follow-up period for our study was 1 year, and data on valve durability and long-term outcomes are still required. Additionally, our analysis found differences in postoperative outcomes between different SEV, but we did not conduct a comparison between different SEV. Valve selection can be individualized according to patient characteristics or anatomy, and using a specific valve type in a given patient may lead to better outcomes. A meta-analysis based on the clinical characteristics of the patients would have provided stronger evidence.

Conclusion

In terms of 30-day mortality, stroke, bleeding, MVC, AKI, CAO, and one-year mortality, there was comparability between the two valve types following TAVR. SEV was associated with better hemodynamic outcomes, except for a higher incidence of PVL. Compared to SAPIEN BEV, ACURATE SEV had a lower risk of PPI at 30 days, while Evolut SEV was associated with a higher risk of PPI. These findings underscore the importance of personalized valve selection.

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1186/s12872-023-03397-3.

Additional file 1.

Acknowledgements Not applicable.

Authors' contributions

Baiqiang Wang: writing—original draft, methodology, software, and visualization. Zeyuan Mei, Xiao Ge, Yunyi Li, and Quan Zhou: data extraction and collation. Xiao Meng, Guipeng An: writing—reviewing and editing.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Availability of data and materials

All data generated or analyzed during this study are included in this manuscript and its additional files.

Declarations

Ethics approval and consent to participate Not applicable.

Consent for publication

Not applicable.

Competing interests

The research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Author details

¹National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China.

Received: 8 May 2023 Accepted: 14 July 2023 Published online: 31 July 2023

References

- Cribier A, Eltchaninoff H, Bash A, et al. Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: first human case description. Circulation. 2002;106(24):3006–8.
- Vahanian A, Beyersdorf F, Praz F, et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease. Eur Heart J. 2022;43(7):561–632.
- Otto CM, Nishimura RA, Bonow RO, et al. 2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2021;143(5):e72–227.
- Rotman OM, Bianchi M, Ghosh RP, Kovarovic B, Bluestein D. Principles of TAVR valve design, modelling, and testing. Expert Rev Med Devices. 2018;15(11):771–91.
- Tugaoen Z, Nguyen P, Arora S, Vavalle J. The selection of transcatheter heart valves in transcatheter aortic valve replacement. Trends Cardiovasc Med. 2022;32(8):513–22.
- Abdel-Wahab M, Mehilli J, Frerker C, et al. Comparison of balloon-expandable vs self-expandable valves in patients undergoing transcatheter aortic valve replacement: the CHOICE randomized clinical trial. JAMA. 2014;311(15):1503–14.
- Van Belle E, Vincent F, Labreuche J, et al. Balloon-Expandable Versus Self-Expanding Transcatheter Aortic Valve Replacement: A Propensity-Matched Comparison From the FRANCE-TAVI Registry. Circulation. 2020;141(4):243–59.
- Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372: n71.
- 9. Cumpston M, Li T, Page MJ. Updated guidance for trusted systematic reviews: a new edition of the Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst Rev. 2019;10:ED000142.
- Deeks JJ, Dinnes J, D', et al. Evaluating non-randomised intervention studies. Health Technol Assess. 2003;7(27):iii–x 1–173.
- 11. Deharo P, Bisson A, Herbert J, et al. Impact of Sapien 3 Balloon-Expandable Versus Evolut R Self-Expandable Transcatheter Aortic Valve

- Pellegrini C, Rheude T, Renker M, et al. ACURATE neo2 versus SAPIEN 3 Ultra for transcatheter aortic valve implantation. EuroIntervention. 2023;18(12):987–95.
- Kim WK, Walther T, Burgdorf C, et al. One-Year Outcomes of a Randomized Trial Comparing a Self-Expanding With a Balloon-Expandable Transcatheter Aortic Valve. Circulation. 2021;143(12):1267–9.
- Mangieri A, Tchetchè D, Kim WK, et al. Balloon Versus Self-Expandable Valve for the Treatment of Bicuspid Aortic Valve Stenosis: Insights From the BEAT International Collaborative Registrys. Circ Cardiovasc Interv. 2020;13(7): e008714.
- 15. Costa G, Buccheri S, Barbanti M, et al. Outcomes of three different new generation transcatheter aortic valve prostheses. Catheter Cardiovasc Interv. 2020;95(3):398–407.
- 16. Finkelstein A, Steinvil A, Rozenbaum Z, et al. Efficacy and safety of newgeneration transcatheter aortic valves: insights from the Israeli transcatheter aortic valve replacement registry. Clin Res Cardiol. 2019;108(4):430–7.
- Feistritzer HJ, Kurz T, Stachel G, et al. Impact of Anesthesia Strategy and Valve Type on Clinical Outcomes After Transcatheter Aortic Valve Replacement. J Am Coll Cardiol. 2021;77(17):2204–15.
- Thiele H, Kurz T, Feistritzer HJ, et al. Comparison of newer generation self-expandable vs. balloon-expandable valves in transcatheter aortic valve implantation: the randomized SOLVE-TAVI trial. Eur Heart J. 2020;41(20):1890–9.
- Schaefer A, Linder M, Seiffert M, et al. Comparison of latest generation transfemoral self-expandable and balloon-expandable transcatheter heart valves. Interact Cardiovasc Thorac Surg. 2017;25(6):905–11.
- Lanz J, Kim WK, Walther T, et al. Safety and efficacy of a self-expanding versus a balloon-expandable bioprosthesis for transcatheter aortic valve replacement in patients with symptomatic severe aortic stenosis: a randomised non-inferiority trial. Lancet. 2019;394(10209):1619–28.
- Barth S, Reents W, Zacher M, et al. Multicentre propensity-matched comparison of transcatheter aortic valve implantation using the ACURATE TA/ neo self-expanding versus the SAPIEN 3 balloon-expandable prosthesis. EuroIntervention. 2019;15(10):884–91.
- Mauri V, Kim WK, Abumayyaleh M, et al. Short-Term Outcome and Hemodynamic Performance of Next-Generation Self-Expanding Versus Balloon-Expandable Transcatheter Aortic Valves in Patients With Small Aortic Annulus: A Multicenter Propensity-Matched Comparison. Circ Cardiovasc Interv. 2017;10(10):e005013.
- Husser O, Kim WK, Pellegrini C, et al. Multicenter Comparison of Novel Self-Expanding Versus Balloon-Expandable Transcatheter Heart Valves. JACC Cardiovasc Interv. 2017;10(20):2078–87.
- Hase H, Yoshijima N, Yanagisawa R, et al. Transcatheter aortic valve replacement with Evolut R versus Sapien 3 in Japanese patients with a small aortic annulus: The OCEAN-TAVI registry. Catheter Cardiovasc Interv. 2021;97(6):E875–86.
- Costa G, Saia F, Pilgrim T, et al. Transcatheter Aortic Valve Replacement With the Latest-Iteration Self-Expanding or Balloon-Expandable Valves: The Multicenter OPERA-TAVI Registry. JACC Cardiovasc Interv. 2022;15(23):2398–407.
- Rheude T, Pellegrini C, Allali A, et al. Multicenter comparison of latestgeneration balloon-expandable versus self-expanding transcatheter heart valves: Ultra versus Evolut. Int J Cardiol. 2022;357:115–20.
- Potratz M, Mohemed K, Omran H, et al. Hemodynamic Performance of Two Current-Generation Transcatheter Heart Valve Prostheses in Severely Calcified Aortic Valve Stenosis. J Clin Med. 2022;11(15):4570.
- van Nieuwkerk AC, Santos RB, Andraka L, et al. Balloon-Expandable versus Self-Expandable Valves in Transcatheter Aortic Valve Implantation: Complications and Outcomes from a Large International Patient Cohort. J Clin Med. 2021;10(17):4005.
- Vlastra W, Chandrasekhar J, Muñoz-Garcia AJ, et al. Comparison of balloon-expandable vs. self-expandable valves in patients undergoing transfemoral transcatheter aortic valve implantation: from the CENTERcollaboration. Eur Heart J. 2019;40(5):456–65.
- Van Mieghem NM, Nuis RJ, Piazza N, et al. Vascular complications with transcatheter aortic valve implantation using the 18 Fr Medtronic CoreValve System: the Rotterdam experience. EuroIntervention. 2010;5(6):673–9.

- van der Boon RM, Nuis RJ, Van Mieghem NM, et al. New conduction abnormalities after TAVI–frequency and causes. Nat Rev Cardiol. 2012;9(8):454–63.
- Sherif MA, Abdel-Wahab M, Stöcker B, et al. Anatomic and procedural predictors of paravalvular aortic regurgitation after implantation of the Medtronic CoreValve bioprosthesis. J Am Coll Cardiol. 2010;56(20):1623–9.
- Eggebrecht H, Schmermund A, Voigtländer T, Kahlert P, Erbel R, Mehta RH. Risk of stroke after transcatheter aortic valve implantation (TAVI): a metaanalysis of 10,037 published patients. EuroIntervention. 2012;8(1):129–38.
- Leon MB, Smith CR, Mack MJ, et al. Transcatheter or Surgical Aortic-Valve Replacement in Intermediate-Risk Patients. N Engl J Med. 2016;374(17):1609–20.
- 35. Van Belle E, Juthier F, Susen S, et al. Postprocedural aortic regurgitation in balloon-expandable and self-expandable transcatheter aortic valve replacement procedures: analysis of predictors and impact on long-term mortality: insights from the FRANCE2 Registry. Circulation. 2014;129(13):1415–27.
- Deharo P, Leroux L, Theron A, et al. Long-Term Prognosis Value of Paravalvular Leak and Patient-Prosthesis. Mismatch following Transcatheter Aortic Valve Implantation: Insight from the France-TAVI Registry. J Clin Med. 2022;11(20):6117.
- Seppelt PC, Mas-Peiro S, De Rosa R, Dimitriasis Z, Zeiher AM, Vasa-Nicotera M. Thirty-day incidence of. stroke after transfemoral transcatheter aortic valve implantation: meta-analysis and mixt-treatment comparison of self-expandable versus balloon-expandable valve prostheses. Clin Res Cardiol. 2021;110(5):640–8.
- Auffret V, Regueiro A, Del Trigo M, et al. Predictors of Early Cerebrovascular Events in Patients With Aortic Stenosis Undergoing Transcatheter Aortic Valve Replacement. J Am Coll Cardiol. 2016;68(7):673–84.
- Nombela-Franco L, Rodés-Cabau J, DeLarochellière R, et al. Predictive factors, efficacy, and safety of. balloon post-dilation after transcatheter aortic valve implantation with a balloon-expandable valve. JACC Cardiovasc Interv. 2012;5(5):499–512.
- Grossman PM, Sukul D, Lall SC, et al. The Relationship Between Hospital Stroke Center Designation and. TVT Reported Stroke: The Michigan TAVR Experience. JACC Cardiovasc Interv. 2023;16(2):168–76.
- Kapadia SR, Makkar R, Leon M, Abdel-Wahab M, Waggoner T, Massberg S, et al. Cerebral Embolic. Protection during Transcatheter Aortic-Valve Replacement. N Engl J Med. 2022;387(14):1253–63.
- 42. Wolfrum M, Handerer IJ, Moccetti F, Schmeisser A, Braun-Dullaeus RC, Toggweiler S. Cerebral embolic protection during transcatheter aortic valve replacement: a systematic review and meta-analysis of propensity score matched and randomized controlled trials using the Sentinel cerebral embolic protection device. BMC Cardiovasc Disord. 2023;23(1):306.
- 43. Haunschild J, Misfeld M, Schroeter T, et al. Prevalence of permanent pacemaker implantation after conventional aortic valve replacement-a propensity-matched analysis in patients with a bicuspid or tricuspid aortic valve: a benchmark for transcatheter aortic valve replacement. Eur J Cardiothorac Surg. 2020;58(1):130–7.
- 44. Fadahunsi OO, Olowoyeye A, Ukaigwe A, et al. Incidence, Predictors, and Outcomes of Permanent Pacemaker Implantation Following Transcatheter Aortic Valve Replacement: Analysis From the U.S. Society of Thoracic Surgeons/American College of Cardiology TVT Registry. JACC Cardiovasc Interv. 2016;9(21):2189–99.
- Franzoni I, Latib A, Maisano F, et al. Comparison of incidence and predictors of left bundle branch block after transcatheter aortic valve implantation using the CoreValve versus the Edwards valve. Am J Cardiol. 2013;112(4):554–9.
- Tretter JT, Mori S, Anderson RH, et al. Anatomical predictors of conduction damage after transcatheter implantation of the aortic valve. Open Heart. 2019;6(1): e000972.
- Abdelfattah OM, Abushouk A, Elgendy IY, Elbadawi A, Khalid U, Généreux P, et al. Impact of Implantation Depth on Transcatheter Aortic Valve Replacement Outcomes: A Meta-Analysis. J Soc Cardiovasc Angiography Interv. 2022;1(6):100450.
- Sammour Y, Banerjee K, Kumar A, Lak H, Chawla S, Incognito C, et al. Systematic Approach to High Implantation of SAPIEN-3 Valve Achieves a Lower Rate of Conduction Abnormalities Including Pacemaker Implantation. Circ Cardiovasc Interv. 2021;14(1): e009407.
- Moriyama N, Vento A, Laine M. Safety of Next-Day Discharge After Transfemoral Transcatheter Aortic Valve Replacement With a Self-Expandable

Versus Balloon-Expandable Valve Prosthesis. Circ Cardiovasc Interv. 2019;12(6): e007756.

- 50. Lerman TT, Levi A, Kornowski R. Meta-analysis of short- and long-term clinical outcomes of the self-expanding Evolut R/pro valve versus the balloon-expandable Sapien 3 valve for transcatheter aortic valve implantation. Int J Cardiol. 2023;371:100–8.
- Kalra SS, Firoozi S, Yeh J, et al. Initial Experience of a Second-Generation Self-Expanding Transcatheter Aortic Valve: The UK & Ireland Evolut R Implanters' Registry. JACC Cardiovasc Interv. 2017;10(3):276–82.
- Husser O, Pellegrini C, Kessler T, et al. Outcomes After Transcatheter Aortic Valve Replacement Using a Novel Balloon-Expandable Transcatheter Heart Valve: A Single-Center Experience. JACC Cardiovasc Interv. 2015;8(14):1809–16.
- Toggweiler S, Leipsic J, Binder RK, et al. Management of vascular access in transcatheter aortic valve replacement: part 2: Vascular complications. JACC Cardiovasc Interv. 2013;6(8):767–76.
- Ochiai T, Chakravarty T, Yoon SH, Kaewkes D, Flint N, Patel V, et al. Coronary Access After TAVR. JACC Cardiovasc Interv. 2020;13(6):693–705.
- Rogers T, Greenspun BC, Weissman G, Torguson R, Craig P, Shults C, et al. Feasibility of Coronary Access and Aortic Valve Reintervention in Low-Risk TAVR Patients. JACC Cardiovasc Interv. 2020;13(6):726–35.
- Mercanti F, Rosseel L, Neylon A, Bagur R, Sinning JM, Nickenig G, et al. Chimney Stenting for Coronary Occlusion During TAVR: Insights From the Chimney Registry. JACC Cardiovasc Interv. 2020;13(6):751–61.
- Kitamura M, Wilde J, Gohmann R, Majunke N, Gutberlet M, Shibata M, et al. Commissural Alignment of the ACURATE neo Valve in Transcatheter Aortic Valve Replacement. JACC Cardiovasc Interv. 2021;14(15):1740–2.
- Tarantini G, Nai Fovino L, Scotti A, Massussi M, Cardaioli F, Rodino G, et al. Coronary Access After Transcatheter Aortic Valve Replacement With Commissural Alignment: The ALIGN-ACCESS Study. Circ Cardiovasc Interv. 2022;15(2): e011045.
- Nombela-Franco L, Ruel M, Radhakrishnan S, et al. Comparison of hemodynamic performance of self-expandable CoreValve versus balloonexpandable Edwards SAPIEN aortic valves inserted by catheter for aortic stenosis. Am J Cardiol. 2013;111(7):1026–33.
- 60. Mosleh W, Amer MR, Joshi S, et al. Comparative Outcomes of Balloon-Expandable S3 Versus Self-Expanding Evolut Bioprostheses for Transcatheter Aortic Valve Implantation. Am J Cardiol. 2019;124(10):1621–9.
- Enríquez-Rodríguez E, Amat-Santos IJ, Jiménez-Quevedo P, et al. Comparison of the Hemodynamic Performance of the Balloon-expandable SAPIEN 3 Versus Self-expandable Evolut R Transcatheter Valve: A Casematched Study. Rev Esp Cardiol (Engl Ed). 2018;71(9):735–42.
- 62. Abdelghani M, Allali A, Kaur J, et al. Impact of prosthesis-iteration evolution and sizing practice on the incidence of prosthesis-patient mismatch after transcatheter aortic valve replacement. Catheter Cardiovasc Interv. 2019;93(5):971–9.
- Liao YB, Li YJ, Jun-Li L, et al. Incidence, Predictors and Outcome of Prosthesis-Patient Mismatch after Transcatheter Aortic Valve Replacement: a Systematic Review and Meta-analysis. Sci Rep. 2017;7(1):15014.
- 64. Okuno T, Khan F, Asami M, et al. Prosthesis-Patient Mismatch Following Transcatheter Aortic Valve Replacement With Supra-Annular and Intra-Annular Prostheses. JACC Cardiovasc Interv. 2019;12(21):2173–82.
- 65. Vallabhaneni S, Matka M, Modi V, et al. Prevalence and Significance of Patient Prosthesis Mismatch Following Edwards SAPIEN XT and SAPIEN 3 Transcatheter Aortic Valve Replacement. Cureus. 2021;13(9): e18044.
- Deutsch MA, Erlebach M, Burri M, et al. Beyond the five-year horizon: long-term outcome of high-risk and inoperable patients undergoing TAVR with first-generation devices. EuroIntervention. 2018;14(1):41–9.
- Hagar A, Li Y, Wei X, et al. Incidence, Predictors, and Outcome of Paravalvular Leak after Transcatheter Aortic Valve Implantation. J Interv Cardiol. 2020;2020:8249497.
- Athappan G, Patvardhan E, Tuzcu EM, et al. Incidence, predictors, and outcomes of aortic regurgitation after transcatheter aortic valve replacement: meta-analysis and systematic review of literature. J Am Coll Cardiol. 2013;61(15):1585–95.
- 69. Kowalewski M, Gozdek M, Raffa GM, et al. Transcathether aortic valve implantation with the new repositionable self-expandable Medtronic Evolut R vs. CoreValve system: evidence on the benefit of a meta-analytical approach. J Cardiovasc Med (Hagerstown). 2019;20(4):226–36.

- Ando T, Briasoulis A, Holmes AA, Taub CC, Takagi H, Afonso L. Sapien 3 versus Sapien XT prosthetic valves in transcatheter aortic valve implantation: A meta-analysis. Int J Cardiol. 2016;220:472–8.
- 71. Witberg G, Landes U, Talmor-Barkan Y, et al. Center Valve Preference and Outcomes of Transcatheter Aortic Valve Replacement: Insights From the AMTRAC Registry. JACC Cardiovasc Interv. 2022;15(12):1266–74.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

- fast, convenient online submission
- thorough peer review by experienced researchers in your field
- rapid publication on acceptance
- support for research data, including large and complex data types
- gold Open Access which fosters wider collaboration and increased citations
- maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

