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Abstract 

Purpose As a non‑invasive tool for the assessment of cardiovascular autonomic function, the predictive value of 
heart rate variability (HRV) for sudden cardiac death (SCD) risk stratification remains unclear. In this study, we investi‑
gated the performance of the individualized heart rate (HR) adjusted HRV  (HRVI) for SCD risk stratification in subjects 
with diverse risks.

Methods A total of 11 commonly used HRV metrics were analyzed in 192 subjects, including 88 healthy controls 
(low risk group), 82 hypertrophic cardiomyopathy (HCM) patients (medium risk group), and 22 SCD victims (high risk 
group). The relationship between HRV metrics and HR was examined with long‑term and short‑term analysis. The 
performance  HRVI was evaluated by area under the receiver operating characteristic curve (AUC) and covariance of 
variation (CV).

Results Most of the HRV metrics were exponentially decayed with the increase of HR, while the exponential power 
coefficients were significantly different among groups. The  HRVI metrics discriminated low, medium and high risk 
subjects with a median AUC of 0.72[0.11], which was considerably higher than that of the traditional long‑term 
(0.63[0.04]) and short‑term (0.58[0.05]) HRV without adjustment. The average CV of the  HRVI metrics was also signifi‑
cantly lower than traditional short‑term HRV metrics (0.09 ± 0.02 vs. 0.24 ± 0.13, p < 0.01).

Conclusions Subjects with diverse risks of SCD had similar exponential decay relationship between HRV metrics and 
HR, but with different decaying rates.  HRVI provides reliable and robust estimation for risk stratification of SCD.
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Introduction
Sudden cardiac death (SCD), defined as “sudden and 
unexpected death occurring within an hour of the onset 
of symptoms, or occurring in patients found dead within 
24  h of being asymptomatic and presumably due to a 

cardiac arrhythmia or hemodynamic catastrophe’’, is 
the most common cause of death worldwide, account-
ing for 20% of global deaths and 50% of deaths from 
cardiovascular disease [1]. Despite decades of efforts 
in public cardiopulmonary resuscitation and quality of 
emergency medical services, according to the latest data, 
only about 10.4% victims experienced SCD survived 
to hospital discharge [2]. These startling figures high-
light the significance of early SCD prediction for reduc-
ing mortality. Fortunately, clinical studies indicated that 
these catastrophic events can be predicted and prevented 
by implementing evidence-based, guideline-endorsed 
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recommendations for primary or secondary prevention 
of SCD [3].

A major challenge in the prediction/prevention of 
SCD lies in the ability to identify the minority of patients 
at high risk and provide reassurance to those deemed 
to be at low risk [4]. The presence of overt structural, 
ischemic and/or primary electrical heart disease is asso-
ciated with major elevations in SCD risk [5]. Addition-
ally, certain individuals are known to be at significantly 
increased risk for SCD among the general population, 
including those with family history of SCD, a high-risk 
mutant gene, hypertrophic cardiomyopathy, reduced left 
ventricular ejection fraction plus or minus clinical heart 
failure, known or suspected ventricular arrhythmias, long 
QT syndrome, brugada syndrome [6]. Despite contem-
porary risk stratification techniques, prediction/preven-
tion of SCD represent major challenges, because current 
risk stratification strategies do not provide individualized 
absolute risk and have a low positive predictive accuracy 
[7].

Although the causes are varied, different etiologies 
share ventricular arrhythmias as a final common pathway 
of SCD. Heart rate variability (HRV) analysis gives infor-
mation about the state of the autonomic nervous system 
responsible for regulating cardiac electrical activity [8]. 
Clinical studies have shown that HRV metrics are the 
most prominent electrophysiological indicators for SCD 
risk assessment in patients after cardiac surgery, after 
myocardial infarction, with ventricular dysfunction, and 
with arrhythmias [9–12]. Although HRV can be used as 
an independent prognostic factor in combination with 
other recognized risk factors in risk stratification, this 
technique has not been incorporated into clinical prac-
tice due to its low reproducibility. The most important 
reason is that different methodological aspects can affect 
the quantification, interpretation and comparison of the 
HRV studies [13]. In particular, HRV metrics is primar-
ily heart rate (HR) dependent and HR significantly influ-
ences HRV due to both physiological and mathematical 
reasons [14, 15]. But previous studies regarding SCD risk 
assessment did not consider the interaction between HR 
and HRV [16].

In the present study, we investigated the relationship 
between HRV metrics and HR in low, medium and high 
risk subjects, developed an individualized HR adjusted 
HRV  (HRVI) approach, and evaluated the reliability and 
robustness of  HRVI for SCD risk stratification.

Materials and methods
Ethics approval and consent to participate section
This retrospective study was approved by Ethics Com-
mittee of Southwest Hospital of the Army Medical Uni-
versity (approval number: KY2020148), and requirement 

to obtain informed written consent was waived by Eth-
ics Committee of Southwest Hospital of the Army Medi-
cal University (approval number: KY2020148) due to 
the retrospective properties of the study. The study con-
formed to the provisions of the Declaration of Helsinki 
(as revised in 2013).

Study population
Adult hypertrophic cardiomyopathy (HCM) patients 
or healthy controls (CON) with Holter ECG recordings 
greater than 18 h were recruited between May 2017 and 
November 2019 from department of cardiology of South-
west hospital and served as medium and low risk groups. 
The diagnostic of HCM is established by imaging, with 
2D echocardiography or cardiovascular magnetic reso-
nance (CMR) showing a maximal end-diastolic wall 
thickness of ≥ 15 mm anywhere in the left ventricle [17]. 
The CON is defined as whom without history of cardi-
ovascular disease, cerebrovascular disease, neurologi-
cal disease, respiratory disease, dyslipidemia and diabetes 
mellitus.

Additionally, victims experienced SCD with ECG 
recordings or R-wave to R-wave interval (RRI) data 
greater than 1  h available were obtained from a public 
(Sudden Cardiac Death Holter Database, SDDB) and a 
commercial ECG databases (American Heart Association 
ECG databases, AHADB) and served as high risk group 
[18, 19].

Assessment of heart rate variability
The method used for HRV analysis has been described 
elsewhere and adheres to the standards developed by the 
Task Force of the European Society of Cardiology and the 
North American Society of Pacing and Electrophysiology 
[8]. In brief, the digitized ECG signals were preprocessed 
to extract the consecutive RRIs by using the algorithm 
developed for the detection of the R waves (Matlab 
R2020a, MathWorks Inc., Natick, MA, USA) and verified 
manually by the investigators. All artifacts and ectopic 
beats were removed and the resultant missing data were 
replaced by cubic spline interpolation from the nearest 
valid data [20].

The following 11 commonly used HRV metrics were 
calculated according to previously published literatures 
[21]: (1) Time-domain metrics, include the standard 
deviation of normally conducted RRIs (SDNN), the root 
mean square of successive differences in normally con-
ducted RRIs (RMSSD), triangular interpolation of RRI 
histogram (TINN) and HRV triangular index (HRVTI); 
(2) frequency‐domain metrics, include total power with 
frequency < 0.4  Hz (TP), power in low frequency range 
(0.04–0.15  Hz) (LF), and relative power of the low fre-
quency range in normalized units (nLF); (3) nonlinear 
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dynamic metrics, include Poincaré plot standard devia-
tion perpendicular the line of identity (SD1), ratio of 
SD1 to Poincaré plot standard deviation along the line of 
identity (SD2) (SD1/SD2), sample entropy (SampEn) and 
deceleration capacity of heart rate (DC).

Both long-term and short-term analyses were adopted 
for these HRV metrics respectively. For long-term HRV 
analysis  (HRVL), the metrics were computed from the 
whole ECG recordings without segmentation. For short-
term HRV analysis  (HRVS), the ECG recordings were 
decomposed into 5-min segments, the metrics were cal-
culated from each segment respectively, and the aver-
age values of all segments were taken as the final  HRVS 
results.

Relationship between HRV metrics and HR
In order to investigate the relationship between HRV 
metrics and HR, the mean HR of each segment was 
calculated. For long-term analysis, the whole ECG 
recording was regarded as one segment, so each met-
ric corresponded to an average HR in each subject. For 
short-term analysis, each 5-min segment corresponded 
to an average HR, and the metrics of segments with simi-
lar HR were averaged to obtain the mean value of a spe-
cific HR. Specifically, the average HR values and HRV 
metrics for segments with an average HR between 40–50, 
50–60, 60–70, 70–80, 80–90, 90–100, 100–110, 110–120 
were calculated. A set of HRV metrics corresponding to 
the HR of approximately 45, 55, 65, 75, 85, 95, 105, 115 
were then obtained for each subject respectively.

HR‑based HRV adjustment with individualized power 
coefficient
The exponential function was used to quantify the rela-
tionship between HRV metrics and HR using the follow-
ing equation that was proposed by Monfredi et al. [22]:

where α is constant, β is the fitted exponential power 
coefficient and HRm is the mean HR of the segments.

The individualized HR based HRV adjustment  (HRVI) 
metrics were calculated based on the fitted exponential 
power coefficient β for each subject, using the following 
equation:

where HRt is the target HR for adjustment.

Statistical analysis
Kolmogorov–Smirnov test was used to check the devia-
tions from normality and homogeneity of variance. 

HRVobserved = α · e
−β·HRm

HRVI =

HRVobserved

e−β·HRm
· e

−β·HRt

Continuous data adhering to normality and homoscedas-
ticity were expressed as the mean ± standard deviation 
(SD) and analyzed by parametric tests (t-test or z-test 
for 2 groups, one-way analysis of variance for 3 groups). 
Continuous data that did not conform to normality 
and/or homoscedasticity were expressed as the median 
(interquartile range [IQR]) and analyzed by the non-
parametric tests (Wilcoxon rank-sum test for 2 groups, 
Kruskal–Wallis rank-sum test for 3 groups). Categorical 
data were expressed as numbers (proportions, %) and 
analyzed by χ2 test. Multiple pairwise comparisons for 
continuous variables among the groups were made by 
post hoc tests (Bonferroni correction). The trend of the 
HRV metrics with increase of HR was analyzed by per-
forming a nonlinear fit with exponential model, and R2 
of fitting was presented when necessary in figure plots. 
The reliabilities and robustness of  HRVI were evaluated 
with the area under the receiver operating characteris-
tic curve (AUC) and coefficient of variation (CV). AUCs 
were compared using the Hanley and McNeil method. 
Two-sided p values 0.05 were considered statistically sig-
nificant and all analyses were performed with the use of 
SPSS (version 22; IBM Corp, Armonk, NY, USA).

Results
A total of 192 cases were included in the study (88 CON, 
82 HCM patients and 22 SCD victims (20 from SDDB, 2 
from AHADB)) and basic information of the subjects is 
summarized in Table  1. For subjects in the SCD group, 
age was unavailable in 6 cases, gender was unavailable in 
4 cases and LVWT was unavailable in all cases. LVWT 
was markedly higher in HCM patients compared to that 
of CON, but there were no statistical significances in age, 
gender, artifacts number among groups. Number of pre-
mature supraventricular beats in the HCM group was 
more than in the CON but fewer than in the SCD group. 
Additionally, number of premature ventricular beats was 
fewer in HCM and CON groups compared with that of 
the SCD group.

HRVL results
The  HRVL results are shown in Fig. 1. Mean HR was sig-
nificantly higher in the HCM than CON group, but did 
not differ with SCD group. Five of the 11 investigated 
HRV metrics (RMSSD, TINN, HRVTI, SD1, DC) were 
differed significantly among the 3 groups. Additionally, 4 
metrics (SDNN, TP, LF, nLF) were significantly differed 
between HCM and CON groups. Two metrics (LF, SD1/
SD2) were significantly differed between HCM and SCD 
groups.

It is worth noting that 3 HRV metrics (TINN, HRVTI, 
DC) had better performance than others and showed sta-
ble decreasing trend among the 3 groups, that is, with a 
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Table 1 Baseline characteristics of the investigated subjects

HCM Hypertrophic cardiomyopathy, SCD Sudden cardiac death, HR Heart rate, ECG Electrocardiogram, PSVB Premature supraventricular beat, PVB Premature 
ventricular beat, LVWT Left ventricular wall thickness, NA Not available
* p < 0.05 compared with CON
† p < 0.05 compared with HCM

Variable CON (n = 88) HCM (n = 82) SCD (n = 22)

Age, year 53.00 (36.25,64.75) 52.00 (42.00,61.25) 67.50 (37.00,74.25) 6 NA

Gender, n (%)

 Male 51 (58) 49 (60) 10 (46)

 Female 37 (42) 33 (40) 8 (36)

4 NA (18)

Mean HR, bpm 75.00 (69.17,81.59) 69.64 (62.11,76.65)* 69.64 (55.79,85.52)

ECG duration, h 23.35 (21.23,23.89) 23.64 (22.02,23.73) 7.17 (2.54,17.11) *†

PSVB number, n 12.00 (3.25,43.50) 26.00 (10.50,115.25)* 69.50 (1.00,287.00)

PVB number, n 1.00 (0.00,5.00) 2.50 (1.00,20.50) 526.00 (73.50,1460.75) *†

Artifact number, n 37.50 (1.25,270.25) 5.50 (1.00,63.00) 22.50 (2.00,421.25)

LVWT, mm 10.00 (9.05,10.53) 18.90 (16.99,21.00)* 22 NA

Fig. 1 Results of standard long‑term heart rate variability analysis. (A) mean heart rate (HR); (B) standard deviation of normally conducted RR 
intervals (SDNN); (C) root mean square of successive differences in normally conducted RR intervals (RMSSD); (D): triangular interpolation of 
RR intervals histogram (TINN); (E): HRV triangular index (HRVTI); (F): total power with frequency < 0.4 Hz (TP); (G): power in low frequency range 
(0.04–0.15 Hz) (LF); (H): relative power of the low frequency range in normalized units (nLF); (I): Poincaré plot standard deviation perpendicular the 
line of identity (SD1); (J): ratio of SD1 to Poincaré plot standard deviation along the line of identity (SD1/SD2); (K): sample entropy (SampEn); (L): 
deceleration capacity of heart rate (DC). CON: healthy control; HCM: hypertrophic cardiomyopathy; SCD: sudden cardiac death. *: p < 0.05 compared 
with CON; †: p < 0.05 compared with HCM
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higher value in the CON group, a moderate value in the 
HCM group and a lower value in the SCD group.

HRVS results
The  HRVS results are shown in Fig. 2. Mean HR remains 
significantly higher in the HCM group than CON. 
Among the 11 investigated HRV metrics, only 1 metric 
(SampEn) had significant difference among the 3 groups. 

Nine metrics (SDNN, RMSSD, TINN, HRVTI, TP, LF, 
nLF, SD1, SD1/SD2) were significantly differed between 
HCM and CON groups. Five metrics (SDNN, RMSSD, 
TP, LF, SD1) were significantly differed between HCM 
and SCD groups.

Figure 3 shows the  HRVS results at different HR ranges. 
The differences of each metric among groups at differ-
ent HR levels were still significant. Specifically, 6 metrics 

Fig. 2 Results of standard short‑term heart rate variability analysis. (A) mean heart rate (HR); (B) standard deviation of normally conducted RR 
intervals (SDNN); (C) root mean square of successive differences in normally conducted RR intervals (RMSSD); (D): triangular interpolation of RR 
intervals histogram (TINN); (E): HRV triangular index (HRVTI); (F): total power with frequency < 0.4 Hz (TP); (G): power in low frequency range(0.04–
0.15 Hz) (LF); (H): relative power of the low frequency range in normalized units (nLF); (I): Poincaré plot standard deviation perpendicular the 
line of identity (SD1); (J): ratio of SD1 to Poincaré plot standard deviation along the line of identity (SD1/SD2); (K): sample entropy (SampEn); (L): 
deceleration capacity of heart rate (DC). CON: healthy control; HCM: hypertrophic cardiomyopathy; SCD: sudden cardiac death.*: p < 0.05 compared 
with CON; †: p < 0.05 compared with HCM

(See figure on next page.)
Fig. 3 Results of standard short‑term heart rate variability analysis at different heart rate (HR) ranges. (A) standard deviation of normally conducted 
RR intervals (SDNN); (B) root mean square of successive differences in normally conducted RR intervals (RMSSD); (C): triangular interpolation 
of RR intervals histogram (TINN); (D): HRV triangular index (HRVTI); (E): total power with frequency < 0.4 Hz (TP); (F): power in low frequency 
range(0.04–0.15 Hz) (LF); (G): relative power of the low frequency range in normalized units (nLF); H: Poincaré plot standard deviation perpendicular 
the line of identity (SD1); (I): ratio of SD1 to Poincaré plot standard deviation along the line of identity (SD1/SD2); (J): sample entropy (SampEn); (K): 
deceleration capacity of heart rate (DC). CON: healthy control; HCM: hypertrophic cardiomyopathy; SCD: sudden cardiac death.*: p < 0.05 compared 
with CON; †: p < 0.05 compared with HCM



Page 6 of 14Yan et al. BMC Cardiovascular Disorders          (2023) 23:144 

Fig. 3 (See legend on previous page.)
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Fig. 4 The fitted exponential function curve between long‑term heart rate variability analysis metrics and heart rate (HR). (A) standard deviation of 
normally conducted RR intervals (SDNN); (B) root mean square of successive differences in normally conducted RR intervals (RMSSD); (C): triangular 
interpolation of RR intervals histogram (TINN); D: HRV triangular index (HRVTI); (E): total power with frequency < 0.4 Hz (TP); (F): power in low 
frequency range (0.04–0.15 Hz) (LF); (G): relative power of the low frequency range in normalized units (nLF); (H): Poincaré plot standard deviation 
perpendicular the line of identity (SD1); (I): ratio of SD1 to Poincaré plot standard deviation along the line of identity (SD1/SD2); (J): sample entropy 
(SampEn); (K): deceleration capacity of heart rate (DC). CON: healthy control; HCM: hypertrophic cardiomyopathy; SCD: sudden cardiac death
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(SDNN, RMSSD, TINN, HRVTI, TP, LF, SD1) in the 
HCM group were significantly differed with those of the 
CON and SCD groups at all of the HR levels. Two met-
rics (nLF, SampEn) in the SCD group were significantly 
differed with those of the CON group regardless of HR 
levels.

Relationship between HRV metrics and HR
Figure  4 shows the fitted exponential function curve 
between long-term HRV metrics and HR. An exponential 
decay-like relationship was observed for all of the investi-
gated metrics in the 3 groups. But the R2 values were rel-
atively lower for all of the metrics, except that SDNN and 
DC in the SCD group with a R2 value greater than 0.5.

Figure  5 shows the fitted exponential function curve 
between short-term HRV metrics and HR. Similarly, an 
exponential decay-like relationship was observed for all 
of the investigated metrics. The R2 values of 8 metrics 
(SDNN, RMSSD, TINN, HRVTI, TP, LF, SD1, DC) were 
greater than 0.5 in all of the 3 groups. The R2 values of 
3 metrics (SDNN, RMSSD, SD1) were greater than 0.5 
in 2 groups and the R2 value of 1 metric (SD1/SD2) was 
greater than 0.5 in 1 group.

Table  2 lists the exponential power coefficients that 
representing the decay rate of short-term HRV metrics 
with mean HR in each group. One metric (nLF) had sig-
nificant different coefficients among 3 groups. All met-
rics except for TP and SampEn had significant different 
coefficients between HCM and CON groups. Two met-
rics (SD1/SD2, DC) had significant different coefficients 
between HCM and SCD groups. Three metrics (RMSSD, 
TINN, TP) had significant different coefficients between 
CON and SCD groups.

Results of HRVI
The  HRVI results are shown in Fig. 6. After adjustment, 4 
metrics (SDNN, RMSSD, nLF and SD1/SD2) had signifi-
cant differences among the 3 groups, while nLF and SD1/
SD2 showed a stable decreasing/increasing trend. Five 
metrics (TINN, HRVTI, TP, LF, DC) had significant dif-
ferences between the HCM and CON groups. One met-
ric (SampEn) was significant different between the HCM 
and SCD groups and 1 metric (SD1) was significant dif-
ferent between the CON and SCD groups.

Performance of HRVI for SCD risk stratification
Table  3 lists the AUC values of each metric for SCD 
risk stratification using different HRV analysis methods. 
There were no significant differences between  HRVL 
and  HRVS metrics except that AUCs of SD1/SD2 and 
DC were relatively lower for  HRVS. Seven  HRVI met-
rics (SDNN, RMSSD, TINN, HRVTI, TP, LF, nLF) had 

significantly higher AUC values, either compared to 
 HRVL or compared to  HRVS.

The  HRVI metrics discriminated low, medium and 
high risk subjects with an AUC ranging from 0.66 to 0.91 
(median 0.72[0.11]), which were considerably greater 
than that of  HRVL (from 0.52 to 0.71, median 0.63[0.04]), 
and  HRVS (from 0.50 to 0.63, median 0.58[0.05]).

Figure 7 shows an example of the chart of HRVI met-
ric SDNN changes with analysis time. SDNN calculated 
using traditional HRVS method fluctuated inversely 
with HR in subjects form each group. After adjustment, 
SDNN kept constant and was not affected by the ana-
lyzing time and duration. Table  4 lists the CV of HRVs 
and HRVI metrics. All of the  HRVI metrics had a signifi-
cantly reduced CV than  HRVS metrics in the 3 investi-
gated groups except that nLF was not differed in HCM 
and SCD groups. The average CV of  HRVI metrics was 
also significantly lower than that of the  HRVS metrics 
(0.09 ± 0.02 vs. 0.24 ± 0.13, p < 0.01).

Discussion
The present study investigated the reliability and robust-
ness of an individualized HR-based HRV adjustment 
method for risk stratification of SCD. The main findings 
of our study are: (1) Most HRV metrics have an expo-
nential decay relationship between HRV and HR, but 
the decaying rate of each metric is significantly differed 
among different risk groups; (2) HCM patients show 
decreased vagal activity and impaired sympatho-vagal 
balance when the confounding effect of HR is eliminated 
for HRV analysis; and (3) HRV metrics that adjusted by 
HR with individualized exponential power coefficient 
improve the performance of SCD risk classification.

As a non-invasive tool for the assessment of cardiovas-
cular autonomic function and risk of SCD, HRV is widely 
used for clinical research with either long-term (1–24 h) 
or short-term (several minutes) analysis. Considered 
as the “golden standard”, long-term HRV describes the 
autonomic function change over hours or even longer 
time spans [23]. Based on retrospective analyses of vari-
ous risk stratification techniques, SCD was found to be 
associated with depressed HRV in 24-h recordings and 
can be predicted by some HRV metrics with relatively 
high accuracy [24, 25]. For instance, Braunisch et al. [26] 
observed a U-shaped association between HRVTI and 
mortality in hemodialysis atrial fibrillation patients. This 
result might contribute to risk stratification independent 
of known risk scores in these patients. The most predom-
inant advantage of long-term HRV analysis is its stabil-
ity, while prominent disadvantages are time consuming, 
poor timeliness, and methodological difficulties [27, 28]. 
Short-term HRV analysis can track dynamic changes 
of cardiac autonomic function within minutes and is 
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Fig. 5 The fitted exponential function curve between short‑term heart rate variability analysis metrics and heart rate (HR). (A) standard deviation of 
normally conducted RR intervals (SDNN); (B) root mean square of successive differences in normally conducted RR intervals (RMSSD); (C): triangular 
interpolation of RR intervals histogram (TINN); D: HRV triangular index (HRVTI); (E): total power with frequency < 0.4 Hz (TP); (F): power in low 
frequency range (0.04–0.15 Hz) (LF); (G): relative power of the low frequency range in normalized units (nLF); (H): Poincaré plot standard deviation 
perpendicular the line of identity (SD1); (I): ratio of SD1 to Poincaré plot standard deviation along the line of identity (SD1/SD2); (J): sample entropy 
(SampEn); (K): deceleration capacity of heart rate (DC). ON: healthy control; HCM: hypertrophic cardiomyopathy; SCD: sudden cardiac death
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a convenient method for the estimation of autonomic 
status. Many studies have evaluated the value of HRV 
metrics for SCD prediction with short-term HRV analy-
sis [21, 29, 30]. For example, Hämmerle et al. [31] dem-
onstrated that HRVTI measured in a single 5-min ECG 
recording in a cohort of patients with atrial fibrillation is 
an independent predictor of cardiovascular mortality and 
might be a valuable tool for further risk stratification to 
guide patient management. The advantage of short-term 
HRV analysis is that it is easy and convenient to perform 
under controlled conditions, while the main disadvantage 
is the poor reproducibility and stability due to the con-
stant fluctuation of cardiovascular autonomic function 
[27]. Additionally, the predictive power of short-term 
HRV analysis is lower than that reported for analysis of 
24-h recordings and these measures may be used only for 
screening of high risk patients.

In the past decades, a number of clinical studies have 
been carried out to evaluate the risk of SCD using both 
long-term and short-term HRV analysis in patients of 
medium risks, such as patients with HCM because peri-
odic evaluation of their risk of SCD has been an integral 
part of clinical management [32–39]. The majority of the 
studies have reported a reduction in HRV parameters 
and an impaired parasympathetic autonomic regula-
tion [32, 34, 35, 38, 39]. But other studies showed that 
the autonomic function was not influenced by HCM and 
the parasympathetic regulation was preserved in HCM 
patients compared to that of healthy control subjects [36, 
37]. Additionally, the autonomic information assessed by 
HRV was demonstrated to be not significantly differed 

between HCM patients with and without cardiovascu-
lar events [33]. Since the clinical significance of HRV in 
patients with HCM remains controversial, further studies 
are warranted to determine the predictive value of HRV 
for SCD risk stratification [40].

Two factors may account for the controversies of these 
studies. The first one is that characteristics of the partici-
pants, such as age, gender, medication use, comorbidity, 
respiration, body positioning, lifestyle, and mental stress, 
have a confounding effect on HRV metrics [41, 42]. Most 
notably, as an independent risk factor of mortality for 
patients with cardiovascular diseases, HR is very sensi-
tive to these characteristics and has been demonstrated 
to be negatively correlated with HRV metrics [43–45]. 
The second one is the methodologies of HRV analysis, 
such as length of the analyzed RRI time series, metrics 
used to measure HRV, number of enrolled patients and 
standardization of HRV measurements [13, 15, 46, 47]. 
Correcting the confounding effects is an effective way to 
improve the reliability and reproducibility of HRV analy-
sis, especially for HR. Earlier attempts to adjust HRV 
metrics using linear regression analysis or using coef-
ficient of variation have achieved some success, but the 
robustness and reproducibility remain unsatisfied [16]. 
Based on the relationship between HRV metrics and HR, 
HRV metrics was corrected with an exponential function 
of fixed power coefficient [22]. Unfortunately, subsequent 
study demonstrated that the exponential power coeffi-
cient between HRV metrics and HR was age dependent 
and sensitive to the condition/situation in which HRV 
measured [9]. Until now, none of SCD risk stratification 

Table 2 Results of individualized power coefficient of exponential function

HCM Hypertrophic cardiomyopathy, SCD Sudden cardiac death, SDNN Standard deviation of normally conducted RR intervals, RMSSD Root mean square of 
successive differences in normally conducted RR intervals, TINN Triangular interpolation of RR intervals histogram, HRVTI HRV triangular index, TP Total power with 
frequency < 0.4 Hz, LF Power in low frequency range(0.04–0.15 Hz), nLF Relative power of the low frequency range in normalized units, SD1 Poincaré plot standard 
deviation perpendicular the line of identity, SD1/SD2 Ratio of SD1 to Poincaré plot standard deviation along the line of identity, SampEn Sample entropy, DC 
Deceleration capacity of heart rate, nu Normalized unit
* p < 0.05 compared with CON
† p < 0.05 compared with SCD

Variable CON (n = 88) HCM (n = 82) SCD (n = 22)

SDNN, ms ‑0.022 (‑0.030,‑0.016) ‑0.028 (‑0.036,‑0.022)* ‑0.029 (‑0.060,‑0.016)

RMSSD, ms ‑0.027 (‑0.032,‑0.018) ‑0.032 (‑0.044,‑0.025)* ‑0.040 (‑0.056,‑0.021) *

TINN, ms ‑0.020 (‑0.025,‑0.014) ‑0.023 (‑0.029,‑0.019)* ‑0.026 (‑0.047,‑0.019) *

HRVTI, ms ‑0.021 (‑0.027,‑0.015) ‑0.026 (‑0.031,‑0.020)* ‑0.026 (‑0.041,‑0.017)

TP,  ms2 ‑0.045 (‑0.063,‑0.032) ‑0.056 (‑0.080,‑0.041) ‑0.080 (‑0.122,‑0.040) *

LF,  ms2 ‑0.037 (‑0.058,‑0.025) ‑0.048 (‑0.070,‑0.034)* ‑0.063 (‑0.093,‑0.025)

nLF, nu 0.003 (‑0.003,0.009) 0.008 (0.002,0.015)* ‑0.020 (‑0.038,‑0.005) * †

SD1, ms ‑0.027 (‑0.032,‑0.018) ‑0.032 (‑0.044,‑0.025)* ‑0.040 (‑0.056,‑0.021) *

SD1/SD2, nu ‑0.003 (‑0.008,0.004) ‑0.005 (‑0.013,‑0.001) 0.003 (‑0.004,0.011) †

SampEn, nat ‑0.002 (‑0.003,0.001) ‑0.001 (‑0.005,0.003) 0.001 (‑0.010,0.010)

DC, ms ‑0.017 (‑0.021,‑0.014) ‑0.025 (‑0.029,‑0.022)* ‑0.019 (‑0.031,‑0.013) †
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related studies have considered the confounding effect of 
HR on HRV analysis.

In the present study, we confirmed that most of inves-
tigated HRV metrics have an exponential decay rela-
tionship between HRV and HR, whether analyzed using 
long-term or short-term HRV analysis methods. This is 
in line with Monfredi’s report on the physiological origin 
of correlation between HRV metrics and HR, although 
different kinds of subjects were investigated [22]. More 
importantly, our results demonstrated that the decaying 
rates were differed among study groups and among HRV 
metrics. This indicated that the reflex control intensity of 
autonomic nervous system on heart rhythm was related 
with the risk degree of SCD. An individualized HR-based 
HRV adjustment approach was thus proposed and evalu-
ated according to these findings. The experimental results 
were consistent with the traditional unadjusted HRV 
analysis methods, that is, HCM patients have autonomic 

dysfunction, with lower vagal activities and with altered 
sympatho-vagal balance compared with that of the 
CON group. However, the differences and trends among 
groups might be altered for each metric when different 
methods were applied. For instance, RMSSD and SDNN 
showed a downward trend if the risk of SCD was medium 
but the values rises sharply to a far greater extent than 
the CON group if the risk was high when analyzed using 
 HRVI. This phenomenon was only observed in RMSSD 
when analyzed using  HRVL but not shown in  HRVS. The 
results of  HRVI might reveal the electrical instability of 
SCD victims with malignant ventricular arrhythmias. 
Indeed, Huikuri et  al. proved that an extremely lower 
HRV metric indicated true autonomic dysfunction, but 
a higher value of the metric might not always reflected 
more healthy autonomic function, it might be an indica-
tor of an unhealthy and highly irregular pattern, such as 
erratic rhythms [9]. Shaffer et al. also demonstrated that 

Fig. 6 Results individualized heart rate based heart rate variability adjustment metrics. (A) standard deviation of normally conducted RR intervals 
(SDNN); (B) root mean square of successive differences in normally conducted RR intervals (RMSSD); (C): triangular interpolation of RR intervals 
histogram (TINN); D: HRV triangular index(HRVTI); (E): total power with frequency < 0.4 Hz (TP); (F): power in low frequency range (0.04–0.15 Hz) 
(LF); (G): relative power of the low frequency range in normalized units (nLF); (H): Poincaré plot standard deviation perpendicular the line of identity 
(SD1); (I): ratio of SD1 to Poincaré plot standard deviation along the line of identity (SD1/SD2); (J): sample entropy (SampEn); (K): deceleration 
capacity of heart rate (DC). CON: healthy control; HCM: hypertrophic cardiomyopathy; SCD: sudden cardiac death.*: p < 0.05 compared with CON; †: 
p < 0.05 compared with HCM
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pathological conditions and cardiac conduction abnor-
malities might increase HRV metrics, and the increased 
HRV metrics were strongly associated with the increased 
risk of mortality [26]. Our results also confirmed that the 
methodologies used have a great impact on HRV analy-
sis and can be used to explain the discrepancies of the 
clinical studies. More importantly, the ability to stratify 
the risk of SCD was greatly improved when the proposed 
method was applied. Such as the AUC values of HRVTI, 
SDNN and RMSSD were increased from 0.56, 0.58 and 
0.59 to 0.73, 0.84 and 0.91, the CV values of HRVTI, 
SDNN and RMSSD were decreased from 0.21, 0.22 and 
0.24 to 0.10, 0.09 and 0.11 respectively when the pro-
posed method was applied. Therefore, our findings have 
significant implications for the studies that have been 
and will continue to be carried out on the SCD risk clas-
sification, which either did not consider the confounding 
effect of HR or improperly corrected for the impact of 
HR when calculating HRV metrics.

This study has several limitations. First, due to the sud-
den nature of SCD, the sample size of the SCD group was 
smaller than that of the other two groups. In addition, 
the ECG duration of this group was also shorter because 
long-time ECG recording before SCD is very difficult to 
collect. Second, the clinical spectrum of intermediate 
risk population is very broad and choice of only HCM 
patients as the intermediate risk group was an arbitrary 
decision. Additionally, the clinical features of the HCM 

Table 3 AUC values of HRV metric for SCD risk stratification 
using different HRV analysis methods

AUC  Area under the receiver operating characteristic curve, HRV Heart rate 
variability, HRVL Standard long-term HRV metrics, HRVS Standard short-term 
HRV metrics, HRVF HRV metrics adjusted by heart rate based on the fixed 
exponential power coefficient, HRVI HRV metrics adjusted by heart rate based 
on the individualized exponential power coefficient, SDNN Standard deviation 
of normally conducted RR intervals, RMSSD Root mean square of successive 
differences in normally conducted RR intervals, TINN Triangular interpolation 
of RR intervals histogram, HRVTI HRV triangular index, TP Total power with 
frequency < 0.4 Hz, LF Power in low frequency range(0.04–0.15 Hz), nLF Relative 
power of the low frequency range in normalized units, SD1 Poincaré plot 
standard deviation perpendicular the line of identity, SD1/SD2, Ratio of SD1 
to Poincaré plot standard deviation along the line of identity, SampEn Sample 
entropy, DC Deceleration capacity of heart rate; nu: normalized unit
* p < 0.05 compared with  HRVL
† p < 0.05 compared with  HRVS

Variable AUC 

HRVL HRVS HRVI

SDNN, ms 0.59 ± 0.03 0.58 ± 0.03 0.84 ± 0.02* †

RMSSD, ms 0.63 ± 0.03 0.59 ± 0.03 0.91 ± 0.02* †

TINN, ms 0.64 ± 0.03 0.58 ± 0.03 0.72 ± 0.03* †

HRVTI, ms 0.64 ± 0.03 0.56 ± 0.03 0.73 ± 0.02*†

TP, ms2 0.52 ± 0.02 0.57 ± 0.03 0.73 ± 0.02* †

LF, ms2 0.60 ± 0.03 0.62 ± 0.03 0.71 ± 0.02* †

nLF, nu 0.63 ± 0.03 0.58 ± 0.03 0.77 ± 0.02*†

SD1, ms 0.63 ± 0.03 0.59 ± 0.03 0.66 ± 0.03

SD1/SD2, nu 0.71 ± 0.02 0.62 ± 0.03* 0.66 ± 0.03

SampEn, nat 0.61 ± 0.03 0.63 ± 0.03 0.66 ± 0.03

DC, ms 0.67 ± 0.03 0.50 ± 0.03* 0.69 ± 0.02†

Fig. 7 An example of chart of individualized heart rate (HR) based heart rate variability adjustment metric standard deviation of normally 
conducted RR intervals (SDNN) changes with analysis time. (A): mean heart rate (HR) of healthy control (CON); (B): mean HR of hypertrophic 
cardiomyopathy (HCM); (C): mean HR of sudden cardiac death (SCD); (D) SDNN calculated from  HRVS  (SDNNS) and  HRVI  (SDNNI) of CON; E  SDNNS 
and  SDNNI of HCM; F  SDNNS and  SDNNI of SCD
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patients were not investigated and no follow-up was per-
formed for the participants. Therefore, the incidences of 
SCD in the normal healthy and in the HCM patients were 
unknown. At the same time, the data of SCD group were 
come from public databases and the basic information of 
these cases was limited. Third, the HRV parameters were 
demonstrated to be influenced by cardioactive therapies 
either individually or interconnectedly, but the impacts of 
these factors on variation in HRV metrics have not been 
considered. Furthermore, whether the HR-adjusted HRV 
metrics limit the impact of medical therapy on outcomes 
remains to be uncertain. Fourth, in order to obtain opti-
mal fitting curve and exponential power coefficient, the 
proposed method in current study may only applicable to 
cases with long-term recording together with large fluc-
tuation of HR. But a default fixed coefficient can be used 
to adjust HRV metrics when only short-term recording is 
available, although the performance may not as better as 
using the individualized coefficient.

Conclusions
HCM patients with medium risk of SCD had similar 
exponential decay relationship between HRV metrics 
and HR, but with different decaying rates compared 
with those of the low risk healthy controls and high 
risk SCD victims. HCM patients were accompanied 
by autonomic nervous dysfunction, represented as 
decreased vagal activity and impaired sympatho-vagal 
balance when analyzed using the individualized HR-
based HRV adjustment method. The HR adjusted HRV 
metrics provide reliable and robust risk stratification of 
SCD.
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