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Abstract 

Background A number of models have been reported for predicting atrial fibrillation (AF) recurrence after catheter 
ablation. Although many machine learning (ML) models were developed among them, black-box effect existed 
widely. It was always difficult to explain how variables affect model output. We sought to implement an explainable 
ML model and then reveal its decision-making process in identifying patients with paroxysmal AF at high risk for 
recurrence after catheter ablation.

Methods Between January 2018 and December 2020, 471 consecutive patients with paroxysmal AF who had their 
first catheter ablation procedure were retrospectively enrolled. Patients were randomly assigned into training cohort 
(70%) and testing cohort (30%). The explainable ML model based on Random Forest (RF) algorithm was developed 
and modified on training cohort, and tested on testing cohort. In order to gain insight into the association between 
observed values and model output, Shapley additive explanations (SHAP) analysis was used to visualize the ML 
model.

Results In this cohort, 135 patients experienced tachycardias recurrences. With hyperparameters adjusted, the ML 
model predicted AF recurrence with an area under the curve of 66.7% in the testing cohort. Summary plots listed the 
top 15 features in descending order and preliminary showed the association between features and outcome predic-
tion. Early recurrence of AF showed the most positive impact on model output. Dependence plots combined with 
force plots showed the impact of single feature on model output, and helped determine high risk cut-off points. The 
thresholds of  CHA2DS2-VASc score, systolic blood pressure, AF duration, HAS-BLED score, left atrial diameter and age 
were 2, 130 mmHg, 48 months, 2, 40 mm and 70 years, respectively. Decision plot recognized significant outliers.

Conclusion An explainable ML model effectively revealed its decision-making process in identifying patients with 
paroxysmal atrial fibrillation at high risk for recurrence after catheter ablation by listing important features, showing 
the impact of every feature on model output, determining appropriate thresholds and identifying significant outliers. 
Physicians can combine model output, visualization of model and clinical experience to make better decision.
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Introduction
One of the primary treatment options for atrial fibrilla-
tion (AF) is rhythm control. Catheter ablation is the first-
line treatment for drug-refractory paroxysmal AF, and 
pulmonary vein isolation, the cornerstone of AF ablation, 
eradicates approximately 90% of AF triggers in princi-
ple [1, 2]. In fact, according to a meta-analysis on cath-
eter ablation as the first-line treatment for paroxysmal 
AF, nearly 35% of patients will experience AF recurrence 
after the procedure [3]. Overall though the recurrence 
rate remains relatively high. This may weaken the con-
fidence of patients in receiving rhythm control therapy, 
and lead to unfavorable outcomes such as persistent or 
permanent AF, heart failure, thromboembolism, demen-
tia and so on. As a result, identifying the risk factors lead-
ing to AF recurrence is a crucial step.

Numerous studies have proposed a variety of predic-
tion models, such as the HATCH, APPLE, or CAAP-AF 
score; however, the results differ greatly [4–6]. Collin-
earity exists in multiple clinical characteristics. Addition-
ally, for univariate and multivariate regression analysis, 
the number of positive cases must be greater than about 
ten times the number of variables. Conventional statisti-
cal methods may be unable to handle such high-dimen-
sionality data in the presence of too many variables. 
Consequently, many limitations may exist in the case of 
conventional statistical methods.

The use of machine learning (ML) algorithms in medi-
cine has been gaining popularity and is helping physi-
cians in clinical decision-making. ML algorithms can 
learn the association between multiple patient variables 
and clinical outcomes automatically. A large number of 
ML algorithms are non-parametric and are not limited by 
variable collinearity. Moreover, ML algorithms are appro-
priate for processing high-dimensionality data, given 
reasonable optimization [7]. Classification models based 
on ML, deep learning (DL) or radiomic methods to pre-
dict the outcome of AF have been reported in numerous 
studies [8–15]. Although the black-box property is com-
mon in ML models, interpretable methods can be used to 
understand their decision-making process and discover 
more potential information [16]. The aim of this study 
is to develop an explainable ML model based on a sin-
gle center cohort as a proof-of-concept in order to reveal 
its decision-making process in identifying patients with 
paroxysmal AF at high risk for recurrence after catheter 
ablation.

Methods
Study design and population
A consecutive cohort of patients was included in the 
study from the First Affiliated Hospital of Air Force 

Medical University between January 2018 and Decem-
ber 2020. Patients over 18 years old with drug-refractory 
paroxysmal AF, who received their first catheter abla-
tion procedure were eligible. Exclusion criteria included: 
(i) persistent, long-standing persistent or permanent 
AF; (ii) valvular AF, which was defined as AF occur-
ring with moderate or severe mitral stenosis or surgical 
valve replacement; (iii) AF with primary cardiomyopathy 
(e.g., Hypertrophic Cardiomyopathy); (iv) reversible AF 
(e.g., AF associated with hyperthyroidism); (v) suspected 
compensated AF because of Sick Sinus Syndrome; (vi) 
patients who failed to follow-up. The electronic medi-
cal record system of the Information Department of the 
hospital showed 471 patients who met the criteria in the 
above period and were thus enrolled in the study. This 
study conformed to Transparent Reporting of a Multi-
variable Prediction Model for Individual Prognosis or 
Diagnosis (TRIPOD) statement and was approved by the 
ethics committee of the hospital, according to the prin-
ciples of the Declaration of Helsinki. Written informed 
consent was acquired by all 471 patients before radiofre-
quency or cryoballoon ablation.

Data collection
With "Atrial Fibrillation" as the search term, all patients 
hospitalized in the department of cardiovascular medi-
cine from January 2018 to December 2020 were retrieved, 
and basic information of patients, including age, sex and 
ID number, were collected. Retrieval logic written in R 
language was used to automatically retrieve other rele-
vant information such as medical history, physical exami-
nation, echocardiogram indexes, laboratory examination, 
procedural recordings, discharge medication and follow-
up records, from the medical record management sys-
tem. Basic information and data extracted by the retrieval 
logic were reviewed by two expert physicians to ensure 
accuracy. Patients were excluded based on the joint con-
sensus of the two physicians if their information did not 
meet the criteria. The data collection flowchart is shown 
in Fig. 1.

Feature selection
To ensure the robustness of the ML classification model, 
features were selected if they: (i) characterized the car-
diac function, risk of systemic embolism or the level of 
inflammation, or (ii) promoted the occurrence and devel-
opment of AF. Laboratory and echocardiographic char-
acteristics were considered as missing values if they were 
not collected four weeks prior to the ablation procedure. 
Characteristics with more than 15% of missing values 
were excluded. Finally, 30 features were selected. Details 
of the features are presented in Additional file 1: Table S1.
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End point and follow‑up
Recurrence of AF post-procedure was defined as the 
first episode of any type of atrial tachycardia, includ-
ing but not limited to atrial flutter and AF, sustained 
for more than 30  s after the blanking period (BP). BP 
refers to the first three months post-procedure. In this 
period, any occurrence of atrial tachycardia was iden-
tified as early recurrence of AF (ERAF), which may 
relate to inflammatory response induced by electrical 
burn or freezing injury, rather than a true relapse [17]. 
The day of repeat ablation procedure was alternative 
if the patient could not remember when tachycardias 
recurred.

After the catheter ablation procedure, the outpatient 
follow-up was scheduled at one, three, six and every 
six months thereafter. At each visit, atrial tachycar-
dia episodes were captured and confirmed by 12-lead 
electrocardiogram, Holter or ambulatory monitors. 
Communication with patients was established through 
online or telephone follow-up to ensure timely feed-
back on patients or inquire about the control of AF.

Explainable ML model
The Random Forest (RF) algorithm was used in the 
building of an explainable ML model.

Classifier illustration
RF is an ensemble algorithm based on the Decision 
Tree (DT). The basic idea of RF is bagging: features 
selected into the RF model are simultaneously voted 
by all independent DTs in the forest, and this process 
conforms to the principle of majority subordination. RF 
integrates the results of all DTs, obtaining higher model 
performance than any individual DT, while avoiding 
overfitting. At the same time, this algorithm can effec-
tively solve the problem of feature collinearity because 
of its “if…else” calculation logic [18].

Model development, validation and testing
The median of each feature was used to fill in the missing 
values, preserving the distribution of data to the great-
est extent. However, underestimation of the weight of 
features using this method is possible. All patients and 
their specific characteristics in this cohort were randomly 
divided into the training and testing cohort (70% and 30% 
of the dataset, respectively). Because most of the hyper-
parameters are overfitted by default, a validation set, as 
an internal testing cohort, was needed to optimize the 
hyperparameters to ensure the better generalization of 
the ML model. This method enabled the loss reduction, 

Fig. 1 Study flowchart. LAAC left atrial appendage closure, PVI, pulmonary vein isolation
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model modification and determination of the weight of 
every selected feature. Therefore, the training cohort 
was randomly split into a training set and validation set 
in the ratio of 9:1. A tenfold cross validation method was 
used to evaluate the accuracy of the model in the training 
cohort to optimize the hyperparameters. The split of the 
datasets is shown in Fig. 1.

The optimal hyperparameters based on accuracy were 
determined step by step: first, learning curves were plot-
ted to select the appropriate number of DTs, which may 
effectively reduce calculation time and avoid introducing 
too many systematic errors; second, repeated grid search 
was employed to determine the partial optimal hyperpa-
rameters, which were overfitted by default; then, adjusted 
feature numbers were included in the ML model accord-
ing to the fitting situation of model; finally, according to 
the above results, grid search was executed to find out 
the global optimal hyperparameters.

Model explanation
Shapley additive explanations (SHAP) analysis is derived 
from a game theory concept and has the advantage of 
gaining insight into the association between observa-
tions and clinical outcome [16]. When the SHAP value 
of feature observation was greater than zero, its effect 
on model output was positive. This method can help 
increase visibility and interpretability of the ML model. 
In this study, SHAP analysis was used to explain the deci-
sion-making process of the ML model, including sort-
ing the features by importance, showing the association 
between observed values and risk, determining cut-off 
points and exploring the contribution of significant outli-
ers. Model development and explanation were conducted 
in Python, version 3.8.8; scikit-learn, version 0.24.2 and 
SHAP, version 0.40.0.

Statistical analysis
Because the missing values for most laboratory examina-
tion and echocardiographic indexes were replaced with 
their medians, they were described as the median (IQR) 
and compared using Mann–Whitney U test. Continuous 
variables with normal distribution were expressed as the 
mean ± SD and compared by one-way ANOVA. Cate-
gorical data were described as numbers and percentages, 
and the Chi square test or Fisher’s exact test were used 
where appropriate. Receiver Operating Characteristic 
(ROC) curve, Precision-Recall curve and Decision Curve 
Analysis were used on the testing cohort to show the 
ability of ML model to classify correctly. Youden index 
was used to determine the threshold of each continu-
ous covariate in the training cohort. Kaplan–Meier curve 
was used to describe time to AF recurrence. Univariable 
and multivariable Cox proportional hazard regression 

analyses were used to explore the potential risk factors. 
Risk ratio (RR) with 95% confidence interval (CI) was 
used to describe the potential risk factors. A two-sided p 
value < 0.05 was considered statistically significant. Statis-
tical analyses were conducted on SPSS statistics 26.0 and 
R 4.2.0.

Results
Patients and baseline characteristics
A total of 1496 patients were screened in this study. 
Finally, 471 patients were enrolled. The median follow-
up time was 25  months (IQR: 13–36  months). Patient 
follow-up totaled an aggregate of 954.3 patient-years with 
135 patients (14.2/100 patient-years) experiencing tachy-
cardias recurrences (Additional file 1: Fig. S1).

The entire cohort was divided based on the clinical 
outcome and 336 patients were assigned into the sinus 
rhythm maintenance group. Baseline characteristics are 
shown in Table 1. In total, the majority of demographic 
characteristics, all concomitant diseases and discharge 
medications did not show statistically significant dif-
ferences between these two groups, excepted male sex 
(60.7% vs. 50.4%, p = 0.040), AF duration (24  months 
vs. 48  months, p = 0.002) and ERAF (1.8% vs. 31.9%, 
p < 0.001). Despite many patients having cardiac comor-
bidities, such as hypertension (42.0% and 45.2%, 
p = 0.52), the indicators corresponding to these diseases 
were relatively normal (e.g., systolic blood pressure, SBP, 
125.5 ± 18.42 vs. 127.6 ± 17.8, p = 0.26). No statistical 
significance was detected in echocardiographic indexes 
and laboratory examinations before (Additional file  1: 
Table S1) and after (Table 1) median imputation.

Model development
Based on the 7:3 ratio, 329 and 142 patients were ran-
domly assigned into the training and testing cohorts, 
respectively. Baseline characteristics are summarized in 
Table  2. Using the hyperparameters confirmed through 
tenfold cross validation, an accuracy of 0.786 in the train-
ing cohort was acquired, with the precision rate, recall 
rate, F1-score and area under the ROC curve (AUROC) 
being 0.964, 0.284, 0.439 and 0.640 respectively. Perfor-
mance of the model in the testing cohort was robust. The 
accuracy, precision rate, recall rate, F1-score and AUROC 
were 0.803, 0.929, 0.325, 0.482 and 0.667, respectively. 
The hyperparameters used are shown in Additional file 1: 
Table S2 and model performance in the testing cohort is 
presented in Fig. 2.

SHAP analysis
The top 15 features with descending importance ranked 
by mean absolute SHAP values are shown in the sum-
mary plot (Fig.  3A). Figure  3B shows the relationship 
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between observations of the top 15 features and SHAP 
values: patients are represented by different dots, and 
the x-axis location of each dot is the SHAP value of its 
corresponding feature at the same row. For continuous 
variables, the dot color represents the values from small 
to large of their corresponding observed values of fea-
tures, which are reflected on the color gradient on the 
right from blue to red. For categorial variables, the blue 
dots represent male sex or positive, and the red dots 
represent female sex or negative. ERAF showed the 
most positive impact on model output. Female patients 

had a higher risk of AF recurrence compared to male 
patients. The dots of these two features were completely 
distributed on both sides of the y-axis. Figure 4B shows 
the prediction process for a representative patient, and 
a true decision could be made through the above two 
features. Continuous variables, such as  CHA2DS2-VASc 
score, NT-proBNP, SBP, AF duration, HAS-BLED score 
and left atrial diameter (LAD), showed positive impact 
on model output, and SHAP values increased as their 
observations increased. On the other hand, neutrophil 
lymphocyte ratio showed negative impact on model 

Table 1 Patient characteristics at baseline

Data are mean ± SD, median (IQR) or n (%). Missing values were filled in with the median

CHA2DS2-VASc score is a system to estimate stroke and HASBLED score to estimate major bleeding in AF patients. AF duration indicates time since first AF diagnosis. 
BMI body mass index, DBP diastolic blood pressure, SBP systolic blood pressure, AF paroxysmal atrial fibrillation, RAAS renin–angiotensin–aldosterone system, ERAF 
early recurrence of atrial fibrillation. **p values < 0.01

Characteristics Sinus Rhythm
n = 336

pxAF recurrence
n = 135

Missing
Data

p value

Age, years 59.9 ± 10.8 60.8 ± 10.5 0 0.42

Male, n (%) 204 (60.7%) 68 (50.4%) 0 0.05

BMI, kg/m2 25.0 ± 3.2 24.9 ± 3.2 0 0.66

DBP, mmHg 73.8 ± 12.7 74.5 ± 11.9 0 0.54

SBP, mmHg 125.5 ± 18.42 127.6 ± 17.8 0 0.26

Smoker, n (%) 142 (42.3%) 63 (46.7%) 0 0.41

CHA2DS2-VASc score 1.5 ± 1.3 1.69 ± 1.2 0 0.27

HASBLED score 1.8 ± 0.8 1.8 ± 0.7 0 0.96

AF duration, months 24.0 (12.0, 60.0) 48.0 (12.0, 96.0) 0  < 0.01**

Hypertension, n (%) 141 (42.0%) 61 (45.2%) 0 0.54

Coronary artery disease, n (%) 59 (17.6%) 21 (15.6%) 0 0.69

Type 2 diabetes, n (%) 39 (11.6%) 16 (11.9%) 0 1.00

Chronic heart Failure, n (%) 27 (8.0%) 9 (6.7%) 0 0.70

Atrial septal defect, n (%) 68 (20.2%) 29 (21.5%) 0 0.80

Left atrium diameter, mm 39.0 (36.0, 42.0) 40.0 (37.0, 43.0) 35 (7.4%) 0.06

Left ventricular ejection fraction, % 58.0 (55.0, 59.0) 58.0 (55.0, 60.0) 34 (7.2%) 0.36

Laboratory examination

 White blood cell count, ×  109/L 5.9 (5.0, 6.9) 5.9 (5.0, 7.0) 4 (0.8%) 0.75

 Neutrophil to Lymphocyte ratio 2.2 (1.7, 2.9) 2.1 (1.7, 3.0) 4 (0.8%) 0.94

 Total triglyceride, mmol/L 1.2 (0.9, 1.6) 1.3 (0.9, 1.7) 28 (5.9%) 0.84

 HDL-C, mmol/L 1.1 (1.0, 1.3) 1.1 (1.0, 1.3) 41 (8.7%) 0.53

 LDL-C, mmol/L 2.3 (1.7, 2.6) 2.2 (1.8, 2.7) 41 (8.7%) 0.42

 NT-proBNP, pg/mL 168.6 (71.1, 457.4) 168.6 (82.5, 487.2) 52 (11.0%) 0.33

 D-Dimer, ng/mL 0.2 (0.1, 0.3) 0.2 (0.1, 0.3) 18 (3.8%) 0.57

Radiofrequency ablation, n (%) 137 (40.8%) 62 (45.9%) 0 0.35

Discharge medication

 Propafenone, n (%) 195 (58.0%) 68 (50.4%) 0 0.15

 Amiodarone/Dronedarone, n (%) 99 (29.5%) 43 (31.9%) 0 0.66

 Beta receptor blocker, n (%) 56 (16.7%) 29 (21.5%) 0 0.23

 RAAS inhibitor, n (%) 132 (39.3%) 54 (40.0%) 0 0.92

 Statin, n (%) 47 (14.0%) 15 (11.1%) 0 0.45

ERAF, n (%) 6 (1.8%) 43 (31.9%) 0  < 0.01**
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Table 2 Baseline characteristics between training cohort and testing cohort

Data are mean ± SD, median (IQR) or n (%)

AF duration indicates time since first AF diagnosis. BMI body mass index, DBP diastolic blood pressure, SBP systolic blood pressure, AF paroxysmal atrial fibrillation, 
RAAS renin–angiotensin–aldosterone system, ERAF early recurrence of atrial fibrillation. *p values < 0.05

Characteristics Training cohort
n = 329

Testing cohort
n = 142

p value

Age, years 59.7 ± 11.1 61.2 ± 9.7 0.17

Male, n (%) 194 (59.0) 78 (55.0) 0.42

BMI, kg/m2 25.0 ± 3.2 24.8 ± 3.2 0.50

Diastolic blood pressure, mmHg 73.5 ± 11.6 75.1 ± 14.3 0.18

Systolic blood pressure, mmHg 125.3 ± 18.7 127.9 ± 17.2 0.17

Smoker, n (%) 144 (43.8) 61 (43.0) 0.92

CHA2DS2-VASc score 1.5 ± 1.2 1.8 ± 1.4 0.02*

HASBLED score 1.7 ± 0.7 1.9 ± 0.8 0.03*

AF duration, months 24.0 (11.0, 60.0) 36.0 (12.0, 72.0) 0.44

Hypertension, n (%) 130 (39.5) 72 (50.7) 0.03*

Coronary artery disease, n (%) 50 (15.2) 30 (21.1) 0.14

Type 2 diabetes, n (%) 35 (10.6) 20 (14.1) 0.28

Chronic heart Failure, n (%) 24 (7.3) 12 (8.5) 0.71

Atrial septal defect, n (%) 59 (16.9) 38 (26.8) 0.04*

Left atrium diameter, mm 39.0 (36.0, 42.0) 39.0 (36.0, 42.3) 0.83

Left ventricular ejection fraction, % 58.0 (55.0, 60.0) 58.0 (55.0, 59.0) 0.96

Laboratory examination

 White blood cell count, ×  109/L 5.9 (5.0, 7.0) 5.9 (5.0, 6.8) 0.80

 Neutrophil to Lymphocyte ratio 2.2 (1.7, 2.8) 2.4 (1.7, 3.1) 0.08

 Total triglyceride, mmol/L 1.2 (0.9, 1.6) 1.2 (0.9, 1.6) 0.62

 HDL-C, mmol/L 1.1 (1.0, 1.3) 1.1 (1.0, 1.3) 0.70

 LDL-C, mmol/L 2.2 (1.7, 2.7) 2.2 (1.8, 2.6) 0.93

 NT-proBNP, pg/mL 168.6 (73.5, 437.1) 168.6 (88.8, 535.6) 0.21

 D-Dimer, ng/mL 0.2 (0.2, 0.3) 0.2 (0.1, 0.3) 0.19

Radiofrequency ablation, n (%) 136 (41.3) 63 (44.4) 0.54

Discharge medication

 Propafenone, n (%) 189 (57.4) 74 (52.1) 0.31

 Amiodarone/Dronedarone, n (%) 94 (28.6) 48 (33.8) 0.28

 Beta receptor blocker, n (%) 61 (18.5) 24 (16.9) 0.70

 RAAS inhibitor, n (%) 127 (38.6) 59 (41.5) 0.61

 Statin, n (%) 42 (12.8) 20 (14.1) 0.77

ERAF, n (%) 32 (9.7) 17 (12.0) 0.51

Fig. 2 Model performance in testing cohort



Page 7 of 13Ma et al. BMC Cardiovascular Disorders           (2023) 23:91  

output, and SHAP values decreased as its observa-
tions decreased. The impact of D-Dimer and total tri-
glycerides (TG) on outcome prediction could not be 
identified because there was no clear correspondence 
between their observed values and SHAP values.

SHAP dependence plots show the impact of a sin-
gle feature on outcome prediction (Fig.  5A–H). The 
plots reveal the type of relationship between observed 
values and risk (i.e., linear, monotonous or complex). 
Three types of scatter distributions show: (i) roughly 
monotonous increasing type, continuous variables with 
positive impact on model output, except age, belong to 
this type; (ii) roughly symmetric distribution type. For 
example, data points for age were equally distributed 
on both sides of SHAP = 0, when the observations of 

age were less than 65; (iii) U-shaped, e.g. D-Dimer. For 
the first two types of distributions, the high-risk cut-
off points were easily identified with the help of force 
plots (Fig.  5I–P): the thresholds of  CHA2DS2-VASc 
score, SBP, AF duration, HAS-BLED score, LAD and 
age were 2, 130  mmHg, 48  months, 2, 40  mm and 
70 years, respectively; the threshold of NT-proBNP was 
52.28  pg/mL, which was lower than its upper limit of 
medical reference (125.00 pg/mL). Thresholds of other 
important features are shown in Additional file  1: Fig. 
S2.

For continuous variables, the influence of outliers on 
model output is visualized in a decision plot (Fig.  4A). 
Patients in the entire cohort are described as different 
lines. The bottom-up variation of lines represents the 

Fig. 3 Summary plot for ML model. Summary plot A showed the top 15 features evaluated by mean absolute SHAP values. Summary plot B, 
patients in the whole cohort were described as different dots. The x-axis location of each dot represented the SHAP value of its corresponding 
feature at the same row. The colors of dots represented the values from small to large, or negative to positive of their corresponding observed 
values of features, which were reflected on the color gradient on the right from blue to red. AF atrial fibrillation, LDL-C low-density lipoprotein 
cholesterol, HDL-C high-density lipoprotein cholesterol, NL ratio neutrophil lymphocyte ratio

Fig. 4 Decision plot and force plot for ML model. A Decision plot, patients in the whole cohort were described as different lines. The bottom-up 
variation of lines represented the influence of corresponding features on model output. B–D force plot intuitively revealed patients prediction. In 
(A), an outlier was marked with dashed line, and the corresponded patient could be seen in (C). AF atrial fibrillation, LDL-C low-density lipoprotein 
cholesterol, HDL-C high-density lipoprotein cholesterol, NL ratio neutrophil lymphocyte ratio
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Fig. 5 The impact of single feature on the outcome prediction. Dependence plots and force plots showed how single features influenced model 
output. Red dashed lines represented SHAP = 0. Thresholds were indicated by orange arrows. AF atrial fibrillation
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influence of corresponding features on outcome pre-
diction. When the observed value of a feature is highly 
influential on model output, the corresponding curve will 
deviate from most curves significantly. Discovery and 
personal influence of outliers are shown in Fig. 4A, C, D.

Statistical significance of thresholds
Statistical thresholds of continuous variables in the 
training cohort evaluated by Youden index were simi-
lar to those determined by SHAP analysis (Table  3). 
Univariable Cox proportional hazard regression analy-
sis showed that only  CHA2DS2-VASc score ≥ 2 and AF 
duration ≥ 48 months were statistically significant in the 
entire cohort (Fig. 6).

Discussion
In this study, an explainable ML model was devel-
oped and tested to reveal its decision-making process 
in identifying patients with paroxysmal AF at high risk 
for recurrence after catheter ablation. The top 15 fea-
tures and their specific impact on outcome prediction 

were revealed through SHAP analysis. ERAF showed 
the most positive impact on model output, and female 
patients had a higher risk of AF recurrence compared to 
male patients.  CHA2DS2-VASc score, NT-proBNP, SBP, 
AF duration, HAS-BLED score and LAD, showed posi-
tive impact on model output, and neutrophil lympho-
cyte ratio showed negative impact on model output. The 
effect of D-Dimer on model output was a U-shaped asso-
ciation. Furthermore, the explainable ML model was able 
to provide suitable thresholds of continuous variables 
and point out outliers. The thresholds of  CHA2DS2-VASc 
score, SBP, AF duration, HAS-BLED score, LAD and age 
were 2, 130 mmHg, 48 months, 2, 40 mm and 70 years, 
respectively. SHAP analysis could show some errors in 
the ML model. These findings fully confirmed the role of 
the explainable ML model in post hoc analysis.

Risk factors identification
Risk assessment for AF recurrence after catheter abla-
tion remains a topic worth exploring. According to cur-
rent guidelines, despite the fact that a series of prediction 

Table 3 Thresholds of continuous variables in training cohort based on Youden index

BMI body mass index, AF atrial fibrillation

Threshold Sensitivity 1‑Specificity Youden index

Age, years 71 0.211 0.128 0.083

Systolic blood pressure, mmHg 132 0.432 0.321 0.111

CHA2DS2-VASc score 2 0.589 0.389 0.200

HASBLED score 2 0.674 0.556 0.118

AF duration, months 48 0.484 0.359 0.125

Left atrial diameter, mm 39 0.653 0.564 0.089

Fig. 6 Univariable Cox proportional hazard regression based on high-risk thresholds. AF atrial fibrillation, SBP systolic blood pressure, LAD left atrial 
diameter
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scores have been evaluated, their prediction ability is 
moderate; the most powerful predictor is ERAF [19]. 
SHAP analysis provides a new method to explore poten-
tial risk factors. The proposed model also revealed that 
ERAF was the most important feature for positive model 
output. Additionally, our model also considered demo-
graphic characteristics, underlying diseases and labora-
tory examination indexes. Their mean contributions are 
ranked in the summary plot (Fig. 3). Fahmy et al. revealed 
the association between late gadolinium enhancement 
cardiac magnetic resonance markers and the risks of car-
diovascular hospitalization and all-cause death in non-
ischemic cardiomyopathy by developing an explainable 
extreme gradient boosting model [20]. Their selected 
ML model was extreme gradient boosting, while the pro-
posed one is RF. In fact, different ML models have differ-
ent feature importance orders. Stenwig et al. revealed the 
decision-making process of four ML models including 
RF, logistic regression (LR), naïve Bayes (NB) and Adap-
tive Boosting (AdaBoost) in predicting hospital mortal-
ity in intensive care unit. Among them, RF, LR and NB 
revealed that the Glasgow coma Scale was the strongest 
feature on positive model output, but age was the strong-
est feature for AdaBoost [21]. More models could provide 
more perspective, while also making choices difficult. 
Until now, most previous studies have taken the approach 
of selecting the best performing model for visualization, 
while it was very difficult to develop a statistically signifi-
cant ML model. As Stenwig et  al. reported, the perfor-
mances between RF, LR and AdaBoost were similar [21]. 
More reasonable evaluation strategies are warranted to 
increase the information available to physicians and aid 
in decision-making.

Relationship between single feature and model output
SHAP analysis could illuminate the effect of every fea-
ture on the outcome from an objective perspective. 
 CHA2DS2-VASc score was a risk factor; the SHAP val-
ues increased with the increase of its observed values. 
Neutrophil lymphocyte ratio was a protective factor; 
the SHAP values decreased with the increase of its 
observed values. The effect of D-Dimer on model out-
put was a U-shaped association. The U-shaped asso-
ciation between variables and outcomes has been widely 
reported in previous studies. Serum uric acid (UA) level 
and in-hospital and 6-month mortality of infective endo-
carditis was shown to have a U-shaped association in a 
single-center cohort. After adjustment of a series of con-
founding variables, UA > 400 μmol/L or UA < 250 μmol/L 
were independent indicators of mortality. The risk of 
cardiovascular events in male patients with medium 
high-density lipoprotein cholesterol (HDL-C) was signifi-
cantly decreased compared with male patients with low 

HDL-C (≤ 40 mg/dl) and male patients with high HDL-C 
(≥ 80 mg/dl), in which a non-linear U-shaped association 
evaluated by spline analysis was shown. In AF patients, a 
U-shaped association was observed between blood pres-
sure and in-ICU or all-cause mortality, and patients with 
blood pressure was 110/55  mmHg had the lowest mor-
tality [22–24]. This type of association was defined using 
multivariable regression combined with spline analysis. 
In the present study, SHAP analysis provided another 
method to define a U-shaped association. Compared 
with statistical methods, ML models do not require 
hypothesis testing; they only need to ensure the gener-
alization ability in external testing cohorts. Additionally, 
these algorithms are non-parametric and are not affected 
by multi-collinearity between features. However, this 
approach has its own limitation: the U-shaped associa-
tion in ML models was between feature observations and 
model output, rather than clinical outcomes. If ML mod-
els did not fit well, the results would be wrong. Therefore, 
pre-processing of features and determination of the opti-
mal hyperparameters are crucial.

Threshold determination
A threshold determines the score of each continu-
ous variable in the clinical model, for example, age in 
 CHA2DS2-VASc score [25]. However, thresholds of con-
tinuous variables are usually determined based to the 
Youden index, previous studies, or clinical experience. 
The proposed explainable ML model provided another 
method to confirm the thresholds of features which were 
evaluated by dependence plots combined with force 
plots. Numerically, thresholds determined by SHAP 
analysis were close to the statistical method results; in 
terms of results, the thresholds determined by the two 
methods were the same. Only  CHA2DS2-VASc score ≥ 2 
and AF duration ≥ 48 months could distinguish patients 
with high risk of AF recurrence. Nevertheless, thresh-
olds determined by SHAP analysis were stable, results 
were same regardless of the cohort (i.e., training, test-
ing, entire), while results of the statistical method were 
different between the three cohorts (Additional file  1: 
Table S3).

The thresholds of laboratory examination indexes 
evaluated by SHAP analysis were inaccurate. For exam-
ple, the threshold of NT-proBNP was 52.28  pg/ml, 
which was less than the upper limit of regular medi-
cal reference. This was clearly an incorrect outcome. 
Stenwig et  al. also reported that the decision-making 
process of LR did not correspond to common medi-
cal theory: a linear relationship was detected between 
temperature and mortality, with higher temperatures 
being associated with better prognosis [21]. This phe-
nomenon explained why the results of conventional ML 
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models are sometimes unacceptable. While with the 
help of SHAP analysis, physicians can easily adopt their 
correct prediction and make more accurate decisions 
based on their own clinical experience.

Model performance in high‑dimensional data
Multivariable Cox regression results showed that ERAF, 
AF duration and left ventricular ejection fraction were 
statistically significant, with an AUROC value of 0.513 
(Additional file 1: Table S4 and S5). On one hand, tra-
ditional statistical models comprised features with 
statistical significance. On the other hand, many con-
tributory outliers were removed when constructing the 
statistical model. This could also be seen from Fig. 5C 
that an SBP of 158 mmHg contributed more to predict 
AF recurrence than female sex. The above-mentioned 
reasons may lead to statistical model under-fitting.

Currently, there are conflicting reports as to whether 
ML models perform better than traditional statistical 
methods. Moncada et  al. [26] showed that an extreme 
gradient boosting model performed considerably bet-
ter than a Cox model in the prediction of breast can-
cer survival in a large database. On the other hand, 
two large-scale studies showed similar performances 
between ML models and the routine statistical method. 
Loring et al. indicated that stepwise multivariable logis-
tic statistics regression model performed as well or 
better than ML models with specific hyperparameters 
in the prediction of death, major bleeding and stroke 
in two large AF cohorts [27]. The performance of ML 
model in predicting long-term risk maybe limited in 
terms of survival analysis [28]. However, large-scale 
data does not mean high-dimensionality data. The for-
mer emphasizes data size, while the latter the number 
of features. In the presence of too many features, sta-
tistical methods will be overloaded. It is postulated that 
compared to statistical methods, ML performs better in 
handling high-dimensionality data.

Recently, three-dimensional data, from computer 
tomography or magnetic resonance images for example, 
have already been used in automatic feature selection by 
DL and risk stratification models have been built based 
on the selected features, to identify patients at high risk 
[9–12]. These features, especially radiomic features, 
effectively compensated for the deficiency of current risk 
factors for AF recurrence. In general, radiomics methods 
can provide hundreds or thousands of obscure features, 
and only explainable AI algorithms can effectively com-
prehend and visualize them. In summary, to the authors 
believe that AI-based risk assessment after AF ablation 
can be widely used in clinical and daily life in the same 
way as AI-based early identification of AF [29, 30].

Explainable ML model in clinical practice
Explainable ML model can make clinical practice more 
accurate. When the characteristics of each patient are 
entered into the model, the model first predicts whether 
he or she is at high risk. After that, we can understand 
the decision-making process of the model through SHAP 
analysis. According to the weight of different features 
and thresholds of features, physicians are also able to 
make rational clinical decisions. If there is any error in 
decision-making process, physicians can clearly see the 
unreasonable judgements in model prediction, to com-
bine model outputs and clinical experience to further 
confirm whether patient is at high risk. Besides, with the 
increase of sample size in the training cohort of model, 
the accuracy of the model will also be improved. Perhaps 
human–computer interaction will become a trend in 
clinical practice in the future.

Limitations
There were several limitations in this study. The sample 
size in our study was small. Median values were used to 
fill in the missing data for laboratory examinations and 
echocardiographic indicators, which may reduce power 
of test and representativeness. Potential risk factors 
proposed by other studies such as abnormal estimated 
glomerular filtration rate, and chronic obstructive pul-
monary disease were not considered because of insuf-
ficient confirmed cases [4, 31]. This made the proposed 
ML model incomparable with previous risk scores. In 
terms of methodology, an ML model with time-to-event 
type analysis called Random Survival Forests was not 
adopted because its visualized analysis was not available 
at that time. Consequently, RF was employed instead. 
Previous studies often used AUROC as the evaluation 
index for adjusting hyperparameters, while here, this led 
to severe overfitting. The AUROCs were 0.940 and 0.551 
in the training and testing cohorts, respectively. Con-
sidering the presence of a large number of positive sam-
ples in the cohort, accuracy was chosen as the index for 
hyperparameter adjustment. The temporal, spatial and 
human distribution of this retrospective cohort was rela-
tively homogeneous. There was no external validation, 
and splitting of population to 7:3 or 9:1 consisted only of 
internal validation, which may limit the generalizability 
of the ML model and affect the accuracy of results.

Conclusions
This study showed that the explainable machine learn-
ing model can effectively reveal its decision-making 
process in identifying patients with paroxysmal atrial 
fibrillation at high risk for recurrence after catheter abla-
tion by listing important features, showing the impact of 
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every feature on model output, determining appropri-
ate thresholds and identifying significant outliers. Physi-
cians could clearly see the unreasonable judgements in 
model prediction, to combine model outputs and clinical 
experience and assist in decision-making. Studies based 
on high-dimensional databases with large sample size 
are necessary to further confirm the universality of this 
finding.
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