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Abstract 

Introduction:  Congenital heart disease (CHD) is one of the most prevalent birth defects in the world. The pathogen-
esis of CHD is complex and unclear. With the development of metabolomics technology, variations in metabolites 
may provide new clues about the causes of CHD and may serve as a biomarker during pregnancy.

Methods:  Sixty-five amniotic fluid samples (28 cases and 37 controls) during the second and third trimesters were 
utilized in this study. The metabolomics of CHD and normal fetuses were analyzed by untargeted metabolomics tech-
nology. Differential comparison and randomForest were used to screen metabolic biomarkers.

Results:  A total of 2472 metabolites were detected, and they were distributed differentially between the cases 
and controls. Setting the selection criteria of fold change (FC) ≥ 2, P value < 0.01 and variable importance for the 
projection (VIP) ≥ 1.5, we screened 118 differential metabolites. Within the prediction model by random forest, 
PE(MonoMe(11,5)/MonoMe(13,5)), N-feruloylserotonin and 2,6-di-tert-butylbenzoquinone showed good prediction 
effects. Differential metabolites were mainly concentrated in aldosterone synthesis and secretion, drug metabolism, 
nicotinate and nicotinamide metabolism pathways, which may be related to the occurrence and development of 
CHD.

Conclusion:  This study provides a new database of CHD metabolic biomarkers and mechanistic research. These 
results need to be further verified in larger samples.
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Key points
What is already known about this topic?

The pathogenesis of congenital heart disease (CHD) 
is complex and unclear. Metabolomics could detect the 
changes in metabolites produced by biological systems, 

which may provide a new clue for CHD occurrence and 
serve as a biomarker for diagnosis.

What does this study add?
Metabolites in maternal amniotic fluid were distributed 

differentially between the CHD cases and controls. Dif-
ferential metabolites may serve as screening biomarkers. 
They were mainly concentrated in three key pathways.

Introduction
Congenital heart disease (CHD) is a structural abnormal-
ity caused by the formation or abnormal development 
of the heart and large blood vessels during embryonic 
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development. CHD is one of the most prevalent of 
birth defects in the world [1]. The worldwide prevalence 
of CHD in live births was rising during the previous 
40 years and reached 9.41‰ during 2010–2017 [1]. The 
etiologies of CHD occurrence are complex. It is reported 
that less than 30% of CHDs are caused by clear environ-
mental or genetic factors, and the unknown causes are 
considered to be the result of interactions between envi-
ronmental and genetic factors [2, 3]. However, most of 
the influencing factors have not been fully confirmed utill 
now, and the teratogenic mechanism is still lacks suffi-
cient evidence, which seriously restricts the formulation 
and implementation of effective interventions for CHD. 
The cause and etiological mechanism of congenital heart 
disease have been studied for decades, but there is no 
obvious breakthrough providing a clear etiological mech-
anism. It is urgent to explore new ways to research the 
etiology of CHD from new perspectives and directions.

The heart is the first functional organ developed in the 
embryo. The primitive heart tube begins to form in the 
3rd week of the embryo and plays a role in circulation in 
the 4th week. By the 8th week, the atrial and ventricu-
lar septa are fully grown, and the connection of the fun-
dus arteries and veins is completed [4]. If it was affected 
by any teratogenic factors during this period, there may 
be abnormal development of the heart or large blood 
vessels.

Currently, the diagnosis of congenital heart disease 
is mainly concentrated in the second trimester, using 
ultrasound echocardiography. [5] However, the preci-
sion of CHD diagnosis is greatly limited by ultrasound 
technology in different hospitals [6, 7], and echocardi-
ography itself has some limitations [6, 8]. Some mild 
CHD subtypes, such as isolated coarctation of the aorta 
(CoA), could not be identified until after birth [9]. Fur-
thermore, CHD is not constant during pregnancy, and it 
may be dynamically change. For example, up to 60–80% 
of ventricular septal defects (VSD) can spontaneously 
recover [10, 11]. Therefore, whether a relatively objective 
inspection method could be developed to increase the 
prediction effect of CHD in later development needs be 
considered.

Metabolomics can quantitatively detect the changes 
in all metabolites produced by biological systems (cells, 
tissues or organisms) after external stimuli or genetic 
modification [12]. Metabolomics can discover disease-
related small molecule compounds by studying the 
internal changes of biological systems. Understand-
ing disease-specific metabolites provides a theoretical 
basis for exploring the pathogenesis of maternal–fetal 
diseases and searching for disease-related biomark-
ers [13, 14]. Metabolomics has been used in studies of 
congenital heart disease in recent years [15, 16]. The 

variable metabolites could provide important clues for 
exploring the pathogenesis and biomarkers of CHD.

Previous studies have used biological samples such as 
maternal serum [17], urine [18, 19], and amniotic fluid 
(AF) [20] to detect metabolites for exploring biomarkers 
of congenital heart disease. However, the types of detect-
able metabolites are limited. The results are inconsist-
ent, and the possible mechanism remains unclear. In this 
study, amniotic fluid in the second and third trimesters 
was used as the research material, and a new metabo-
lomic research method involving untargeted metabo-
lomic assays was used to analyze the specific metabolic 
markers in AF. At the same time, we explored the meta-
bolic mechanism of congenital heart disease to provide 
more research evidence.

Materials and methods
Study population and sampling
This project was based on a multicenter hospital-based 
case–control study. Pregnant women who underwent 
prenatal diagnosis during the second trimester were 
recruited from three hospitals in China [21]. Mothers 
whose fetuses were prenatally diagnosed with CHDs or 
without any anomalies were initially chosen as the cases 
and the controls, respectively. The phenotype was diag-
nosed by sonographers, pathologists, and pediatricians 
through systematic ultrasound, autopsy, or postnatal fol-
low-up [21, 22]. Cases were defined as isolated congenital 
heart disease without other extracardiac malformations, 
and controls were defined as fetuses without any congen-
ital anomalies.

A structured questionnaire-based interview was used 
to collect the subjects’ information after the pregnant 
women were signed informed consent [23, 24]. Dur-
ing the follow-up process, when the subjects needed 
to undergo amniocentesis for medical reasons, 5  ml of 
amniotic fluid was extracted in the amniocentesis proce-
dure with the woman’s consent. The amniotic fluid was 
centrifuged, and the supernatant was stored in aliquots 
at -70  °C until analysis. This study was approved by the 
Medical Ethics Committee of Sichuan University (ID: 
2,010,004) and West China Second University Hospital 
(ID: 2015(011)). All subjects provided informed consent 
to participate. Here, all samples and information were 
obtained from the project biobank. The subtypes of CHD 
cases are listed in Table 1. Both cases and controls were 
singletons without a family history of CHD.

Sample pretreatment
A 100 μL sample of Amniotic fluid supernatant was trans-
ferred to an EP tube, and added 400 μL of extraction solu-
tion (acetonitrile: methanol = 1: 1) (CNW Technologies) 
containing isotopically labeled internal standard mixture 
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was added. After vortexing, sonication, ice-water bath, 
incubated and centrifugation, 400μL of supernatant was 
transferred to a fresh glass vial and dried in a vacuum 
concentrator at 37 ℃. Then, the dried samples were 
reconstituted in 200 μL of 50% acetonitrile, and the above 
steps repeated. 75 μL of supernatant was transferred to 
a fresh glass vial for LC/MS analysis. The quality control 
(QC) sample was prepared by mixing an equal aliquot of 
the supernatants from all of the samples.

Metabolomic measurements
Ultra (high) performance liquid chromatography 
(UHPLC) separation was carried out using an ExionLC 
Infinity series UHPLC System (AB Sciex), equipped with 
a UPLC BEH Amide column (2.1 × 100  mm, 1.7  μm, 
Waters). The mobile phase consisted of 25  mmol/L 
ammonium acetate and 25 mmol/L ammonia hydroxide 
( CNW Technologies) in water (pH = 9.75) (A) and ace-
tonitrile (B). The analysis was carried out with an elution 
gradient. The column temperature was 25℃. The autosa-
mpler temperature was 4 ℃, and the injection volume 
was 2 μL (pos) or 2 μL (neg), respectively.

TripleTOF 5600 mass spectrometry (AB Sciex) was used 
for its ability to acquire MS/MS spectra on an informa-
tion-dependent basis (IDA) during LC/MS experiments. 
In this mode, the acquisition software (Analyst TF 1.7, AB 
Sciex) continuously evaluates the full scan survey MS data 
as it collects and triggers the acquisition of MS/MS spectra 
depending on preselected criteria. In each cycle, the most 
intensive 12 precursor ions with intensity above 100 were 
chosen for MS/MS at a collision energy (CE) of 30 eV. In 
the detection process, standard products and blank con-
trols were strictly used for quality control, and data qual-
ity control was also carried out. The UHPLC-QTOF-MS 

analysis was performed at Biomarker Technologies Corpo-
ration, Beijing, China (https://​inter​natio​nal.​biocl​oud.​net/).

Statistical analysis
Descriptive statistics
A case–control analysis was performed to assess the vari-
ations in metabolites on CHDs. The personalized features 
included maternal age, maternal prepregnancy body 
mass index (ppBMI), fetal sex (male, female), and gravid-
ity. Frequency was used to describe qualitative data, and 
continuous variables were described as quantitative data 
using the mean and SD. Differences in the frequencies of 
these factors between cases and controls were assessed 
using the chi-square test or Student’s t-test.

Metabolomics data processing
Mass spectrometry (MS) raw data (.wiff) files were con-
verted to the mzXML format by ProteoWizard. The 
process including peak deconvolution, alignment and 
integration, was processed by R package XCMS (version 
3.2). Minfrac and cut off are set as 0.5 and 0.3 respec-
tively. In-house MS2 database was applied for metabolite 
identification.

Metabolomics data were analyzed using SIMCA-
P14.0 (Umetrics, Umea, Sweden) software for differen-
tially grouped principal component analysis (PCA), fold 
change (FC) analysis, orthogonal partial least squares 
discriminant analysis (OPLS-DA) and unsupervised clus-
tering analysis. Dimensionality reduction and sorting 
of metabolites were performed to screen for differential 
metabolites. The methods of combining the multiple of 
FC, the P value of the Wilcoxon-Mann–Whitney rank 
sum test, the variable importance for the projection (VIP) 
value of the OPLS-DA model and the multivariate logis-
tic regression analysis were used to screen the differential 
metabolites and mapping.

Metabolic biomarker screening
The random forest (RF) method was used to select the 
most influential markers. RF was implemented using the 
‘randomForest’ function from the ‘randomForest’ pack-
age in R [25]. In addition, a receiver operating charac-
teristic (ROC) curve was used to estimate the area under 
the curve (AUC) score and 95% confidence interval (95% 
CI) of each selected marker. A logistic regression model 
including these selected markers was conducted, and 
the Akaike information criterion (AIC), Bayesian infor-
mation criterion (BIC), Positive Predictive Value (PPV), 
Negative Predictive Value (NPV), and AUC score were 
used to estimate the performance of the model for clas-
sifying the subjects. Additionally, sensitivity analysis was 
conducted to evaluate the robustness of the model.

Table 1  The subtypes of CHD cases

VSD Ventricular septal defects, TOF Tetralogy of fallot, AVSD Atrioventricular 
septal defect, RAI Right atrial isomerism, SV Single ventricle, SA Single atrium, 
PTA Persistent truncus arteriosus, TGA​ Transposition of the great arteries, 
PA Pulmonary atresia, LA-RVF Left coronary—right ventricular fistula, PVM 
Pulmonary valve malformation

CHD cases ICD-10 Number

VSD Q21.0 6

TOF Q21.3 10

AVSD Q21.2 2

SV Q20.4 3

SA,SV Q21.2;Q20.4 2

PTA,VSD Q20.0;Q21.0 2

TGA,PA,VSD Q20.3;Q21.0; Q25.5 1

RAI Q20.6 1

LA-RVF,PVM Q22.3;Q24.5 1

Total 28

https://international.biocloud.net/
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Metabolic pathway analysis
The classification information of differential metabolites 
was annotated by using the HMDB (Human Metabolome 
Database, https://​hmdb.​ca/) and KEGG ((Kyoto Ency-
clopedia of Genes and Genomes, https://​www.​kegg.​jp/) 
databases. Enrichment analysis and statistical drawing of 
the annotated differential metabolites were performed.

All analyses were carried out using R version 3.6.1 (R 
Foundation for Statistical Computing, http://​www.r-​
proje​ct.​org). Two-tailed values of P < 0.05 were consid-
ered significant.

Results
Major characteristics of the participants
After applying the inclusion and exclusion criteria to 
subjects with qualified biological samples, 65 amniotic 
fluid samples (28 cases and 37 controls) were ultimately 
recruited in the present study.

The demographic characteristics are listed in Table  2 
and the individual information of the 28 CHDs are listed 
in Appendix Table S1. The proportions of gestational age 
and fetal sex were significantly different between the case 
and control groups (p < 0.05) (Table 2).

Metabolomics detection results
Sixty-five samples were subjected to untargeted metab-
olomic assays, and a total of 2472 metabolites were 
identified. All metabolites were evaluated by princi-
pal component analysis (PCA), sample cluster analysis 
and repeated correlation evaluation. The distribution 
of metabolites between the case and control groups is 
shown in Fig. 1A, Band Figure S1A/B.

Orthogonal projections to latent structures-discrimi-
nant analysis (OPLS-DA) of differential groups of cases 
and controls was performed to obtain more reliable 
information on the degree of correlation between group 
differences in metabolites and experimental groups. In 
this model, R2Y was 0.984, and Q2 was 0.692. The results 
were shown inFig. 1C, D. The OPLS-DA results showed 
that there was a significant difference in metabolic pro-
files between CHD patients and controls in AF.

Biomarker screening and validation
Differential metabolite screening
For subjects with biological replicates, the method of 
combining the fold change (FC), the P value of the t-test 
and the VIP value of the OPLS-DA model was used to 
screen the differential metabolites. The screening criteria 
were FC > 2, P value < 0.01, and VIP > 1.50. A total of 118 
differential metabolites were screened, of which 59 were 
upregulated and 59 were downregulated (listed in Table 
S2). The results are shown with the volcano map in Fig-
ure S1C.

Results of randomforest
The more values below the detection limit, the less accu-
rate the representation of the metabolite may be. Hence, 
we selected the candidate markers, with a detection value 
of 0 in less than 10% of subjects and 36 markers were 
selected from the 118 markers. Then, we selected 10 
markers with an average VIP ≥ 1.8 as the most influential 
markers for the following analysis.

When the number of decision trees (ntree) was 38, 
and the number of variables contained in each decision 
tree (mtry) was 9, the out-of-bag error was minor and 
tended to stabilize (Figure S2, Figure S3). As is shown in 
Fig. 2, meta_1461 emerged as the most important input 
variable, followed by meta_1587 and meta_901 (all of the 
above markers have a Mean Decrease Accuracy > 4.0). 
Less important variables included meta_838, meta_1024, 
meta_1195, meta_2137, meta_2373, meta_1261, and 
meta_1354 (all of these markers have a Mean Decrease 

Table 2  Comparison of demographic characteristics between 
the two groups

CHDs Controls χ2/T P value

Number of samples 28 37

Age, mean (SD) 28.0(4.1) 28.2(6.1) 0.121 0.90

Gestational age (week), mean 
(SD)

27.0(5.1) 32.2(8.7) 2.81 0.01

ppBMI, mean (SD) 20.2(3.0) 20.2(1.9) -0.044 0.96

Fetal gender, n(%)

  male 10(35.7) 23(62.2) 4.461 0.04

  female 18(64.3) 14(37.8)

Gravidity, mean (SD) 1.97(1.24) 2.04(1.35) -0.195 0.85

Hospital, n(%)

  Shenzhen 10(35.7) 8(21.6) 4.769 0.09

  Guangxi 9(32.1) 7(18.9)

  Fujian 9(32.1) 22(59.5)

Residence, n(%)

  City 16(57.1) 26(70.3) 1.201 0.273

  Subway 12(42.9) 11(29.7)

Factory nearby, n(%)

  Yes 6(21.4) 4(10.8) 1.380 0.24

  No 22(78.6) 33(89.2)

Farmer, n(%)

  Yes 1(3.6) 1(2.7) 0.04 0.841

  No 27(96.4) 36(97.3)

Secondhand tobacco, n(%)

  Yes 11(39.3) 18(48.6) 0.565 0.452

  No 17(60.7) 19(51.4)

Folate supplement, n(%)

  Yes 25(89.3) 29(78.4) 1.349 0.246

  No 3(10.7) 8(21.6)

https://hmdb.ca/
https://www.kegg.jp/
http://www.r-project.org
http://www.r-project.org
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Accuracy < 4.0). We used a logistic regression model 
to assess the performance of the combination of these 
markers whose Mean Decrease Accuracy > 4.0 for pre-
dicting the class of the subjects. The confusion matrix is 
shown in Figure S4.

Performance of the selected markers
The ROC curve is the plot of the True Positive Rate (TPR) 
against the True Negative Rate (TNR) at varying clas-
sification thresholds. The ROC curves compared the 
performances of meta_1461, meta_901 and meta_1587 
for classifying the subjects. It showed that meta_1461 
performed best, with an AUC score of 89.6% (95% CI: 
81.4%, 97.8%) (Fig.  3A). The meta_1587 ranked second 

Fig. 1  Metabolomics analysis between the two groups. A, PCA of all samples, where the X-axis represents the first principal component and the 
Y-axis represents the second principal component. B, PCA 3D map of differential grouping. C, OPLS-DA score map. D, OPLS-DA model validation 
diagram
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(AUC score: 85.6%, 95% CI: 76.1%, 95.2%), followed by 
the meta_901 (AUC score: 85.0%, 95% CI: 75.7%, 94.4%) 
(Fig. 3A).

The ROC curve of the model is shown in Fig. 3B, with an 
AUC score of 98.8%. Furthermore we also performed a sen-
sitivity analysis with some covariates in the logistic regres-
sion model, such as: maternal age, maternal prepregnancy 
Body Mass Index (ppBMI), fetal sex (boy, girl), and the 
number of pregnancy times. The AUC score (99.5%) of the 
adjusted model (with covariates adjusted in the model) was 
similar to that (98.8%) of the model without any covariates 
adjusted. The AIC decreased from 25.15 to 23.68, and the 
BIC increased from 33.85 to 38.90 (Fig. 3B).

In summary, the metabolite biomarker screening pro-
cess and results were showed in Fig. 4.

Metabolic pathway analysis
Differential metabolites were annotated by the KEGG 
(Kyoto Encyclopedia of Genes and Genomes) database 
and HMDB (Human Metabolome Database). The hyper-
geometric test was used in ClusterProfiler to perform 
enrichment analysis on the annotation results of the 
KEGG differential metabolites [26]. The results showed 
that the differential metabolites were mainly concen-
trated in glycerophospholipids, fatty acyls and prenol 
lipids (Fig.  5A). These metabolites were enriched in 
aldosterone synthesis and secretion, drug metabolism, 

nicotinate and nicotinamide metabolism pathways 
(Fig. 5B).

Discussion
In this study, the distribution characteristics of amniotic 
fluid metabolites in CHDs and the controls were obtained 
through untargeted metabolomics detection. Possible 
biomarkers for CHD occurrence or development were 
screened. We also explored the possible mechanisms for 
differential metabolites in the occurrence of CHD. Our 
results provide basic data resources into congenital heart 
disease from a new perspective.

Congenital heart disease is one of the most common 
birth defects [1], and the diagnosis of the disease is overly 
dependent on the technical level of ultrasonography [5].

Metabolomics is an extension of genomics that can 
more intuitively reflect the profiling of metabolites in 
biofluids, cells and tissues and it is routinely applied as 
a tool for biomarker discovery [27]. Owing to innovative 
developments in informatics and analytical technologies 
and the integration of orthogonal biological approaches, 
it has become possible to expand metabolomic analyses 
to understand the systems-level effects of metabolites, 
which can be used for CHD screening or to explore the 
mechanism of occurrence and development of CHD.

Fig. 2  The 10 features ranked by mean decrease accuracy for the CHD random forest model. meta_1461: PE(MonoMe(11,5)/
MonoMe(13,5)) meta_1587: 4-[N-(p-Coumaroyl)serotonin-4’’-yl]-N-feruloylserotonin meta_901: 2,6-Di-tert-butylbenzoquinone meta_838: 
3-Methylglutarylcarnitinemeta_1024: Mytilin B meta_1195: N-[(4E,8Z)-1,3-dihydroxyoctadeca-4,8-dien-2-yl] hexadecanamide 1-glucoside 
meta_2137: Medicagenic acid 28-O- [b-D-xylosyl-(1- > 4)-a-L-rhamnosyl-(1- > 2)-a-L-arabinosyl] ester meta_2373: C16:1-OH Sphingomyelin 
(SM(d18:0/16:1(9Z)(OH))) meta_1261: Glabrolide meta_1354: Lysophosphatidylcholine acyl C 10:0 (LysoPC10:0)
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A previousstudy conducted a serum metabolomics 
study on children with congenital heart disease and 
found that 13 metabolites showed a significant increasing 
or decreasing trend. Taurine, glutamine, and glutamate 
presented considerable diagnostic value for the diagno-
sis of CHD [16]. Some researchers performed metabo-
lomics detection on the serum of patients with congenital 
bicuspid aortic valve (BAV) and controls [15]. A predic-
tive model for estimating group BAV was established and 
those studies supported the value of serum-based metab-
olomic profiling methods as an adjunct tool for screening 
large populations.

However, these studies used infant or childhood serum 
samples as material to explore the relationship between 

metabolites and CHD, and it is relatively rare to study the 
occurrence of CHD through biological samples obtained 
from pregnant mothers. Previous studies reported 
that maternal serum [17], urine [18, 19], and amniotic 
fluid (AF) [20] were used to detect metabolites by [1] H 
NMR or GC–MS technology. However, these methods 
for detecting metabolites are more limited than those 
detected by UHPLC‒MS.

Amniotic fluid, as the growing environment of the 
fetus, is relatively stable in the middle and late pregnancy 
stages. Compared with maternal blood, urine and other 
samples, it can better reflect the actual metabolic state of 
the fetus. The urine excreted by the fetus after the sec-
ond trimester is an important source of amniotic fluid, 

Fig. 3  The ROC curves for classifying the subjects. A, The ROC curves comparing the performances of meta_1461, meta_901 and meta_1587. B, 
The ROC curve of the logistic regression model for classifying the subjects
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and the metabolites in the fetus will be reflected in the 
amniotic fluid with the excretion of urine. The sources of 
amniotic fluid in the second and third trimesters are basi-
cally similar. Amniotic fluid not only provides a mechani-
cal buffer for the fetus to prevent limb adhesion but also 
provides nutrients and growth factors, transports metab-
olites, and more. At the same time, the physiological and 
biochemical levels of the amniotic fluid reflect the health 
status of the fetus. Accurate and sensitive details of birth 
defect-related metabolites and their respective biochemi-
cal pathways can be obtained through amniotic fluid 
metabolomics, which also allows a better understanding 
of the overall pathophysiology of affected pregnancies.

A total of 2472 metabolites were identified using the 
UHPLC-QTOF-MS untargeted metabolomics detection 

in this study. Many new metabolites were found com-
pared to previous studies, which mostly used NMR or 
GC-TOF–MS methods, and could only detect hundreds 
of metabolites [17–20]. UHPLC is increasingly displac-
ing conventional high performance liquid chromatogra-
phy [28] LC–MS is the main workhorse of metabolomics 
owing to its high degree of analytical sensitivity and 
specificity when measuring diverse chemistry in complex 
biological samples [29]. The untargeted metabolomics 
detection method can identify as many metabolites as 
possible by comparing characteristic peak ions with 
standard databases, and useing semiquantitative metab-
olite content to obtain high-throughput metabolomics 
data [28]. Untargeted metabolomics is a powerful tool 
that can provide new clues for prenatal diagnosis [14]

Fig. 4  The process and results for metabolite biomarker screening
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。It will be helpful for discovering affected metabolic 
pathways, revealing disease pathogenesis, and identifying 
potential biomarkers [27].

The method of combining the fold change, the P value 
of the t-test and the VIP value of the OPLS-DA model 
was utilized to screen the differential metabolites, 
and the machine algorithm of randomForest (RF) was 
exploited to screen the biomarkers. The randomForest is 
an ensemble learning method that operates by construct-
ing a collection of decision trees [30], and for variable 
selection, it performs well across sample sizes [31]. In 
addition, a receiver operating characteristic (ROC) curve 
was used to estimate the area under the curve (AUC) 
score and 95% confidence interval (95% CI) of each 
selected marker. We also evaluated the combined differ-
entuation ability of these makers using a logistic regres-
sion model. The results show that PE(MonoMe(11,5)/
MonoMe(13,5)), 4-[N-(p-Coumaroyl) serotonin-4’’-yl] 
-N-feruloylserotonin and 2,6-Di-tert-butylbenzoquinone 
in maternal amniotic fluid perform well in distinguishing 
cases from controls.

PE(MonoMe(11,5)/MonoMe(13,5)), also called 
13-(3-methyl-5-pentylfuran-2-yl) tridecanoate, a kind 
of dimethylfuran fatty acid, is abundant in fish oil and is 
easily oxidized and degraded [32]. There are few reports 
about this chemical, but it has been found to be decreased 
in patients with gastrointestinal diseases [33]. 4-[N-(p-
Coumaroyl)serotonin-4’’-yl]-N-feruloylserotonin is a 
serotonin derivative with a trace distribution in medici-
nal plants such as safflower [23]. It has strong scavenging 
free radicals and anti-lipid peroxidation ability, antitumor 
activity, anti-inflammatory and bacteriostatic effects, and 

it inhibits the production of melanin and other functional 
activities. This substance has the potential for the study 
of atherosclerosis and aortic wall distention [24]. 2,6-Di-
tert-butylbenzoquinone, a cyclic NIAS originating from 
food packaging, has not been found to be associated 
with disease occurrence. However, a similar substance 
2,5-di-(tert-butyl)-1,4-benzohydroquinone, is a revers-
ible inhibitor of cardiac cells through intracellular Ca2+ 
handling in ventricular myocytes [34]. Among the ten 
most important metabolites, methylglutarylcarnitine was 
also reported detected differentially in CHD patients and 
controls [17]. Deficiency of 3- methylglutarylcarnitine 
affects the metabolism of leucine as well as ketogenesis. 
This disorder is one of an increasing list of inborn errors 
of metabolism that present clinically, such as metabolic 
syndrome (MetS), risk of developing cardiovascular dis-
ease (CVD) and type 2 diabetes [35].

This study found that the differential metabolites were 
mainly concentrated in several metabolic pathways, and 
it was inferred that aldosterone synthesis, drug metabo-
lism, nicotinate and nicotinamide metabolism played 
very important roles in the occurrence and develop-
ment of CHD. The secretion of aldosterone is mainly 
regulated by renin-angiotensin, a hormone that regu-
lates the blood volume in the human body. It maintains 
water balance by regulating the reabsorption of sodium 
in kidneys. Excessive circulating and tissue angiotensin II 
(AngII) and aldosterone levels lead to a profibrotic, pro-
inflammatory, and hypertrophic milieu [36] that causes 
remodeling and dysfunction of cardiovascular and renal 
tissues [37]. Nicotinate and nicotinamide are collectively 
referred to as vitamin 22. Nicotinamide forms coenzyme 

Fig. 5  Differential metabolite enrichment pathways. A HMDB classification map of the differential metabolites in each group. B KEGG enrichment 
map of the differential metabolites
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I and coenzyme II with ribose, phosphate and adenine in 
the body. They are the coenzymes of many dehydroge-
nases and are associated with many metabolic processes 
including glucose glycolysis, fat metabolism, and pyru-
vate metabolism, which are closely related to the forma-
tion of high-energy phosphate bonds [38]. As the major 
coenzyme in fuel oxidation and oxidative phospho-
rylation and a substrate for enzyme responses to energy 
stress and oxidative stress, nicotinamide adenine dinu-
cleotide (NAD +) is emerging as a metabolic target in a 
number of diseases including heart failure. Niacin turns 
into niacinamide in the body to play the above role. In 
addition, niacin also has a strong peripheral vasodilator 
effect. Nicotinamide adenine dinucleotide (NAD) is syn-
thesized de novo from tryptophan through the kynure-
nine pathway. The patients showed treduced levels of 
circulating NAD. Defects similar to those in the patients 
developed in the embryos of Haao-null or Kynu-null 
mice owing to NAD deficiency. The prevention of NAD 
deficiency during gestation could prevent these defects 
[39]. These results would provide additional new metabo-
lite data sources for the CHD, and suggest a new idea for 
further mechanistic exploration of CHD.

Of course, this study also has some shortcomings: the 
sample size is relatively small, and the metabolite dif-
ferences between CHD subtypes could not be analyzed 
comparatively. The basic characteristics the of cases 
and controls are somewhat inconsistent due to the lim-
ited collection of samples in biobanks, which may inter-
fere with the results. In addition, only internal data were 
used in the validation model, and no external database 
was used for verification. Future studies should focus on 
larger sample sizes for in-depth analysis and validation. 
This study will provide certain directions and ideas for 
future studies.
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