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infarction in diet‑induced prediabetes: 
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Abstract 

Background:  Hyperglycaemia is known to result in oxidative stress tissue injury and dysfunction. Interestingly, 
studies have reported hepatic and renal oxidative stress injury during prediabetes; however, any injury to the 
myocardium during prediabetes has not been investigated. Hence this study aims to assess changes in the 
myocardial tissue in an HFHC diet-induced model of prediabetes.

Methods:  Male Sprague Dawley rats were randomly grouped into non-prediabetes and prediabetes (n = 6 in each 
group) and consumed a standard rat chow or fed a high-fat-high-carbohydrate diet respectively for a 20-week 
prediabetes induction period. Post induction, prediabetes was confirmed using the ADA criteria. Aldose reductase, 
NADH oxidase 1, superoxide dismutase, glutathione peroxide, cardiac troponins were analysed in cardiac tissue 
homogenate using specific ELISA kits. Lipid peroxidation was estimated by determining the concentration of 
malondialdehyde in the heart tissue homogenate according to the previously described protocol. Myocardial tissue 
sections were stained with H&E stain and analysed using Leica microsystem. All data were expressed as means ± SEM. 
Statistical comparisons were performed with Graph Pad instat Software using the Student’s two-sided t-test. Pearson 
correlation coefficient was calculated to assess the association. Value of p < 0.05 was considered statistically significant.

Results:  The prediabetes group showed a markedly high oxidative stress as indicated by significantly increased 
NADH oxidase 1 and malondialdehyde while superoxide dismutase and glutathione peroxide were decreased 
compared to non-prediabetes group. There was no statistical difference between cardiac troponin I and T in the non-
prediabetes and prediabetes groups. Cardiac troponins had a weak positive association with glycated haemoglobin.

Conclusion:  The findings of this study demonstrate that prediabetes is associated with myocardial injury through 
oxidative stress. Future studies are to investigate cardiac contractile function and include more cardiac biomarkers.
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Background
Prediabetes is a state of intermediate hyperglycaemia 
with glucose levels above normal but below the diabetic 
threshold  [1]. Prediabetes is characterized by impaired 
fasting glucose (IFG), impaired glucose tolerance 
(IGT) and glycated haemoglobin (Hb1Ac)  [2]. These 
parameters of prediabetes are risks for progressing to 
type 2 diabetes mellitus and its complications(T2DM)  
[3, 4]. Approximately 25% of individuals with prediabetes 
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will progress to T2DM and 70% of those individuals will 
develop overt diabetes complications within their lifetime  
[5, 6]. Cardiovascular disease (CVD) is the leading cause 
of mortality and morbidity in T2DM worldwide and 
myocardial infarction (MI) contributes significantly to 
CVD mortality   [7–9]. In T2DM reactive oxygen species 
(ROS) generation within the cardiomyocytes exceeds 
antioxidant defence leading to oxidative damage   [10, 
11]. The polyol pathway depletes nicotinamide adenine 
dinucleotide phosphate (NADPH), which is essential 
for generating glutathione while producing NADH, a 
substrate for NADH oxidase  [12]. The expression of 
aldose reductase (AR) and sorbitol dehydrogenase (SDH) 
is increased in the diabetic heart  [13]. Studies have 
reported that AR expression accelerates atherosclerosis 
in diabetic mice  [14]. Atherosclerosis reduces myocardial 
blood flow and subsequently leads to myocardial 
infarction (MI)  [15]. Furthermore, overexpression of AR 
in cardiomyocytes leads to a greater infarct area  [16, 17].

Alternatively, hyperglycaemia in T2DM increases 
NADH oxidase1  [18]. NADH oxidase1 is one enzyme 
that produces excessive ROS within a diabetic heart  [18]. 
Studies show that overexpression of NADH oxidase 1 
impairs endothelial vaso-relaxation in animal models of 
T2DM and may lead to MI  [19]. Cardiac troponins (cTnI) 
and (cTnT) are released as an indication of myocardial 
damage due to myocardial ischemic injury  [20]. Loss of 
viable myocardium is histological evidence of MI  [21]. 
Elevation of NADH oxidase 1 is reported to play a role in 
endotoxin-induced cardiomyocyte apoptosis  [22].

Studies have demonstrated that T2DM related 
complications begin during prediabetes  [23, 24]. Studies 
in our laboratory using the high-fat-high-carbohydrate 
(HFHC) diet-induced model of prediabetes have 
demonstrated that kidney and brain injury occurs 
during prediabetes  [25, 26]. However, any injury to 
the myocardium during prediabetes have not been 
investigated. Hence this study aims to assess changes in 
myocardial tissue in an HFHC diet-induced model of 
prediabetes.

Materials and methods
Aim
This study aimed to assess myocardial tissue injury in 
diet-induced prediabetes.

Animals
Male Sprague–Dawley (150–180  g) rats were obtained 
from the Biomedical Research Unit (BRU), University of 
KwaZulu Natal (UKZN). The animals were kept under 
standard experimental conditions at room temperature 
(225 ± 2  °C), humidity (55 ± 5%), and 12  h  day:12  h 
night cycle. The animals consumed a standard rat chow 

(Meadow Feeds, South Africa) and water ad  libitum 
for two weeks to acclimatize before being exposed to 
an experimental diet (high-fat high carbohydrate). 
The high-fat high carbohydrate (HFHC) is composed 
of carbohydrates (55%kcal/g), fats (30%kcal/g), and 
proteins (15%kcal/g) as previously described  [27]. All 
experimental procedures were conducted in line with 
ARRIVE guidelines and according to the ethics and 
animal care guidelines of the Animal Research Ethics 
Committee (AREC) of UKZN, Durban, South Africa. 
The study was approved by the UKZN AREC (Ethics No: 
AREC024/018D).

Experimental design
After two weeks of acclimatization, the animals were 
grouped into a non-prediabetic (n = 6) control group 
and prediabetic group (n = 6). The non-prediabetic 
group was fed standard rat chow and water ad  libitum. 
The prediabetes group was fed an HFHC diet and water 
supplemented with fructose (15%) for 20 weeks to induce 
prediabetes. After 20  weeks, prediabetes was confirmed 
using the American Diabetes Association (ADA) criteria 
for diagnosis of prediabetes. Animals with fasting blood 
glucose (FBG) concentrations of 5.6–7.1  mmol/L, oral 
glucose tolerance test (OGTT) 2-h glucose concentration 
of 7.1–11.1 mmol/L and glycated haemoglobin (Hb1Ac) 
concentration of 5.7–6.4% were considered prediabetic. 
FBG was determined using the tail-prick method and 
measured using a One-Touch select glucometer (Lifescan, 
Malta, United Kingdom). OGTT was conducted as per 
laboratory established protocol  [27–31]. Briefly, after 
12 h fasting period, FBG was measured (time, 0 min) in 
all the animals. Glucose (0.86 g/kg, p.o.) was loaded into 
the animals via oral gavage (18-gauge gavage needle, 
38  mm long curved with 21/4  mm ball end). Glucose 
concentrations were measured at 30-, 60-, and 120-min 
following glucose loading.

Tissue harvesting
The animals were placed in a gas chamber (BRU, 
UKZN, South Africa) and anesthetized with 100  mg/kg 
of Isoform (Safeline Pharmaceuticals Ltd, Roodeport, 
South Africa) for 3  min to collect blood samples. 
Blood samples were collected by cardiac puncture into 
precooled heparinized containers in an unconscious 
state. The blood samples were centrifuged (Eppendorf 
centrifuge 5403, Germany) at 4  °C , 503 g for 15 min to 
collect plasma. The plasma was stored at – 80  °C in a 
Bio Ultra freezer (Snijders Scientific, Tilburg, Holland). 
The hearts of all the animals were excised, cut in half, 
rinsed with cold standard saline solution, weighed, and 
snapped frozen in liquid nitrogen before storage in Bio 
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Ultra freezer at – 80 ◦C for biochemical analysis and in 
formalin for histological analysis  [30, 32].

Biochemical analysis
Oxidative stress
Aldose reductase, NADH oxidase 1 and Malondialdehyde 
(MDA)  Aldose reductase and NADH oxidase 1 
activity was measured in the heart tissue homogenate 
using their respective sandwich ELISA according to the 
manufacturer’s protocol (Fine Biotech Co., Ltd., Wuhan, 
China). Lipid peroxidation was estimated by determining 
the concentration of MDA in the heart tissue homogenate 
according to a previously described protocol  [30, 33].

SOD and  GPx  The antioxidant status of the heart 
homogenates was determined by using a specific ELISA 
kit to analyse the concentration of superoxide dismutase 
(SOD) and glutathione peroxidase (GPx) according 
to the instructions of the manufacturer (Elabscience 
Biotechnology Co., Ltd., Houston, TX, USA).

Cardiac injury
cTnT and cTnI  Cardiac troponins (cTnT and cTnI) were 
measured from heart tissue homogenate using specific 
rat sandwich ELISA according to the protocol from the 
manufacturer (Elabscience Biotechnology Co., Ltd., 
Houston, TX, USA).

Heart tissue histology
Heart tissues were fixed in formalin overnight, paraffin-
embedded and processed for sectioning. 0.5 μM sections 
(Robert-Bosch-Straße, Walldorf, Baden-Württemberg, 
Germany) were made and stained with haematoxylin and 
eosin (H&E) to analyse the cardiomyocyte size and the 
arrangement of cardiomyocyte myofibers and apoptotic 

cells using Leica microsystems for analysis Leica Scanner, 
SCN400 and Slide Path Gateway LAN software for 
analysis (Leica Microsystems CMS, Wetzlar, Germany).

Statistical analysis
All data were expressed as means ± SEM. Statistical 
comparisons were performed with Graph Pad instat 
Software (version 5.00, GraphPad Software, Inc., San 
Diego, California, USA) using the Student’s unpaired 
two-sided t-test. Pearson correlation coefficient was 
calculated to find the association between HbA1c and 
cardiac troponins. A value of p < 0.05 was considered 
statistically significant.

Results
Body weight and heart weight
Body weight and heart weight was measured at the 
end of prediabetes induction period between the NPD 
and PD groups. Figure  1B shows a significant increase 
(p < 0.0001) in body weight in the PD (681.7 ± 6.22  g) 
compared to the NPD (382.5 ± 2.54  g) group. Figure  2B 
shows a significant increase (p < 0.0001) in heart weight 
in the PD group (1.76 ± 0.02  g) compared to the NPD 
group (1.52 ± 0.01 g).

ADA prediabetes diagnosis parameters
FBG, OGTT and HbA1c concentration was measured 
at the end of prediabetes induction between the NPD 
and PD groups. Figure  2A shows that there was a 
significant increase (p = 0.0020) in FBG in the PD 
(4.93 ± 0.20 mmol/L) group compared to the NPD group 
(4.00 ± 0.103  mmol/L). Figure  2B shows that glucose 
concentration started significantly high in the PD group 
(p = 0.0020) compared to the NPD group at time 0. 
Glucose concentration remained significantly higher in 
the PD compared to the NPD as depicted at times 30 min 

A B

Fig. 1  Body weight and heart weight between the NPD and PD group. Values are presented as mean ± SEM. (n = 6 in each group). A **** indicates 
p < 0.0001. B **** indicates p < 0.0001. NPD NPD, non-prediabetes; PD, prediabetes; g, gram
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and 120 min with p = 0.0215 and p = 0.0386, respectively. 
The AUC graph in Fig.  2B shows a significant increase 
(p = 0.0095) in glucose concentration in the PD group 
compared to NPD. Figure  2C shows that there was a 
significant increase (p = 0.043) in HbA1c concentration 
in the PD group (6.49 ± 0.32 mmol/mol) compared to the 
NPD group (4.32 ± 0.89 mmol/mol).

Oxidative stress
The concentration of AKR1B1, NOX1, MDA, SOD 
and GPx was measured between the NDP and PD 
group at the end of the prediabetes induction period. 
Figure  3 depicts an increase in oxidative stress as 
indicated by an increase in oxidative stress biomarkers 

and a decrease in antioxidant enzymes. Figure  3A 
shows an insignificant increase in the concentration 
of AKR1B1 (p = 0.4419) and a significant increase 
in NOX1 (p = 0.0156) and MDA (p = 0.0007) 
concentration in the PD group compared to the NPD 
group. Figure  3B shows a significant decrease in the 
concentration of SOD (SODNPD = 71.44 ± 0.59  ng/
mL and SODPD = 63.61 ± 0.83  ng/mL) and 
GPx (GPxNPD = 1791 ± 47.04  ng/mL and 
GPxPD = 1547 ± 37.89  ng/mL) in the PD group 
compared to the NPD group with p < 0.0001 and 
p = 0.0033 respectively.

A

B

C

Fig. 2  FBG, OGTT and AUC and HbA1c between the NPD and PD group. Values are presented as mean ± SEM (n = 6 in each group). A * Indicates 
p = 0.0020. B * Indicates p = 0.0215, p = 0.0386. ** Indicates p = 0.0020, 0.0095. C* Indicates p = 0.043. NPD, non-prediabetes; PD, prediabetes; FBG, 
fasting blood glucose; OGTT, oral glucose tolerance; AUC, area under the curve; HbA1c, glycated haemoglobin
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Cardiac injury
Cardiac troponins (cTnT and cTnI)
The concentration of cTnT and cTnI was measured 
between the NPD and PD groups at the end of the 
prediabetes induction period. Figure  4 shows that 
there was an increase in mean cTnT concentration 

(989.5 ± 48.60 pg/mL) in the PD group compared to NPD 
group (456.50 ± 280.10  pg/mL); however, the increase 
was insignificant (p = 0.0814). The concentration of cTnI 
was increased (522.20 ± 6.30  pg/ml) in the PD group 
compared to the NDP group (496.20 ± 11.34 pg/mL). The 
increase insignificant (p = 0.0799).

A

B

Fig. 3  The concentration of AKR1B1, NOX1, MDA, SOD and GPx between the NPD and PD group. Values are presented as mean ± SEM. 
(n = 6 in each group). A NOX1: * Indicates p = 0.0156. MDA *** Indicates p = 0.0007. GPx ** p = 0.0033. B SOD **** indicates p < 0.0001. NPD, 
non-prediabetes; PD, prediabetes; AKR1B1, aldose reductase; NOX1(NADH oxidase 1), nicotinamide adenine dinucleotide phosphate oxidase 1; 
MDA, malondialdehyde; SOD, superoxide dismutase; GPx, glutathione peroxidase

Fig. 4  The concentration of cardiac troponins between the NPD and PD group. Values are presented as mean ± SEM. (n = 6 in each group). NPD, 
non-prediabetes; PD, prediabetes; cTnT, cardiac troponin T; cTnI, cardiac troponin I
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Myocardial morphology
Heart tissue was processed for histological analysis at the 
end of the prediabetes induction period. Figure 5 shows 
H & E photomicrographs from the NPD (A) and PD (B) 
myocardium at a 20X250µm magnification. In Fig.  5A, 
the myocardium has a regular shape of myofibers and a 
nucleus that is located centrally. In Fig. 5B, myofibers are 
disarrayed and consist of fibrous fibres.

Correlation
The association between HbA1c and the cardiac 
troponins (cTnT and cTnI) was calculated between the 
NPD and PD group. There was an insignificant negative 
association between HbA1c and cTnT as well as cTnI in 
the NPD group (r = − 0.74; p = 0.2552) and (r = − 0.84; 
p = 0.0722) respectively. The association between HbA1c 
and cTnT including cTnI was positive and insignificant 
in the PD group (r = 0.37; p = 0.6273) and (r = 0.06; 
p = 0.9188) respectively.

Discussion
T2DM is a significant risk factor for CVD  [34, 35]. 
However, T2DM is preceded by prediabetes which is an 
intermediate state of hyperglycaemia  [3]. Complications 
associated with T2DM are reported to begin during the 
prediabetes stage  [36, 37]. Studies in our laboratory have 

demonstrated that hepatic and renal dysfunction and 
injury seen in T2DM are present during prediabetes   [38, 
39]. However, the risk factors of myocardial tissue injury 
have not been investigated in diet-induced prediabetes. 
Hence this study was conducted to assess myocardial 
tissue injury in diet-induced prediabetes.

Hyperglycaemia is due to impaired insulin secretion 
or impaired insulin because of pancreatic beta-cell 
dysfunction or insulin resistance  [40]. In states of insulin 
resistance, beta-cells compensate by increasing insulin 
secretion to maintain glucose homeostasis. However, 
insulin levels increase and glucose remains elevated  
[41]. Insulin resistance and hyperinsulinemia result in 
impaired glucose tolerance  [42]. IFG is obtained from 
fasting plasma glucose and occurs because of poor 
glucose regulation, resulting in raised plasma glucose 
even after an overnight fast.  [42]. IGT is associated 
with peripheral insulin resistance, and IFG is associated 
with hepatic insulin resistance and endogenous glucose 
production  [4]. According to a study by Bacha and 
colleagues, obese adolescents who show signs of glucose 
dysregulation, including IFG, IGT, or both, are more 
likely to have impaired insulin secretion rather than 
reduced insulin sensitivity  [3]. HbA1c is a product 
of a non-enzymatic reaction between glucose and 
haemoglobin. HbA1c increases as the average plasma 

Fig. 5  Illustrates H & E photomicrographs from the myocardium of the NPD and PD group. NPD, non-prediabetes; PD, prediabetes; MF, myofiber; N, 
nucleus; F, fibrous fibres
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glucose level increase and reflects average plasma glucose 
over a long period  [43, 44]. In the present study, the 
PD group depicted a significantly impaired glucose 
tolerance, FBG and HbA1c concentration compared to 
the NPD group. These results coincide with the results 
published by Siboto et  al.,   [45]. The PD group also 
had a significantly higher body weight and heart weight 
compared to the NPD. High body weight and heart 
weight can be attributed to the high calorie consumed for 
20 weeks.

Aldose reductase (AR) reduces glucose to fructose in 
the polyol pathway, thus shifting excess glucose from 
metabolism  [46]. This reaction reduces NADPH which 
is essential for glutathione formation while producing 
NADH, a substrate for NADH oxidase  [12]. Activation of 
AR puts a strain on the NADPH system and subsequently 
on the glutathione reductase/glutathione peroxidase 
system, which protects against oxidative stress  [47, 
48]. In this study, there was an insignificant increase in 
AKR1B1 concentration in PD compared to the NDP 
group. These results contradict the finding by Daniels 
et  al., who recently reported a significant increase in 
cardiac fructose and sorbitol in T2DM subjects. Sorbitol 
positively correlated with diastolic dysfunction. In 
Zucker Diabetes Fatty rats, fructose metabolism enzymes 
were markedly increased  [49]. This study analysed 
intermediates of the polyol and then inferred that the 
enzymes of the polyol pathway are increased since 
intermediates of the pathway are elevated. AR reductase 
is active in chronic hyperglycaemia. The present 
study analysed AR in intermediate hyperglycaemia. 
Intermediate hyperglycaemia could be the reason that we 
did not find evidence of statistical significance.

NOX 1 is one of the cellular sources of ROS  [50]. 
NOX1 catalyses the transfer of electrons to O2 generation 
O2− (superoxide) and H2O2 (hydrogen peroxide)  [51]. 
Hyperglycaemia activates NOXI through PKC-dependent 
Rac1 activation  [52]. NOX1 is also activated by the 
activation of the polyol pathway  [12, 53]. In this study, 
there was a significant increase in NOX1 concentration in 
PD compared to the NPD group. These results coincide 
with the findings by Xu et  al., in which wild type mice 
fed high-fat-high sucrose (HFHS) diet demonstrated 
an increase in Mac-2, IL-1β and nitrosative stress in 
cardiac tissue by comparison to NOX-1 knockout mice, 
indicating that NOX1 contributes to oxidative stress, 
endothelial activation and myocardial inflammation  [54]. 
According to literature, ROS generation results in cardiac 
oxidative stress, associated with increased cardiac 
fibrosis, reduced cardiac contractility and ultimately 
cardiac dysfunction  [55]. NOX1-induced ROS plays a 
role in endotoxin-induced cardiomyocyte apoptosis  [22]. 

NOX1 elevation risks myocardial injury and myocardial 
infarction by inducing oxidative stress and inflammation.

Lipids present in plasma and cell membranes are 
subjected to ROS attack and peroxidation. Lipid 
peroxidation products are toxic to a cell and require 
removal by GSH  [53]. MDA is a biomarker of oxidative 
stress formed as a lipid peroxidation product   [56]. 
The level of MDA is increased in T2DM  [57]. In the 
present study, there was a significant increase in MDA 
concentration in PD compared to the NPD group. These 
results are in accordance with the results reported by 
Su et  al., in which subjects with diabetes and those 
with prediabetes had a significantly increased MDA 
concentration and a decreased SOD activity compared 
to subjects with standard glucose tolerance  [58]. In the 
HFHC diet-induced prediabetes model, Akinnuga et  al., 
reported a significant increase in MDA concentration 
in the prediabetes group compared to non-prediabetes  
[30].

Reactive oxygen species (ROS) are highly reactive 
molecules that regulate vascular tone and cell 
proliferation  [59]. Antioxidant enzymes prevent 
abnormal ROS production and lipid peroxidation. 
Enzymes such as SOD converts superoxide to hydrogen 
peroxide, which is then transformed into water 
by catalase or glutathione peroxidase (GPx)  [60]. 
Glutathione reductase is a hydrogen donor to GPx; 
therefore, it is vital for the activity of GPx  [61]. In this 
study, there was a significant decrease in SOD and 
GPx. These results concur with the results published by 
Mabuza et  al., in which the prediabetes group showed 
a significant decrease in SOD and GPx in the cardiac 
tissue  [33]. An increase in AR activity is one of the 
many factors that cause a decrease in GPx. AR depletes 
NADH, a substrate for GSH. AR metabolizes GSH-lipid-
derived aldehyde adducts, which decreases GSH and 
subsequently increases oxidative stress [61].

The myocardium releases cardiac troponins (cTn) in 
proportion to the degree of myocardial tissue injury and 
disruption of the myocyte membrane [62–64]. Though 
these cardiac injury markers are usually tested in the 
event of cardiac ischemia, several studies have reported 

Table 1  Correlation between antioxidant enzymes and 
oxidative stress biomarkers

Values are represented as Pearson r value. (n = 6 in each group).

NPD non-prediabetes, PD prediabetes, HbA1c glycated haemoglobin, cTnT 
troponin T, cTnI troponin I

cTnT (pg/mL) cTnI (pg/mL)

NPD PD NPD PD

HbA1c − 0.74 0.37 − 0.84 0.06

p value 0.2552 0.6273 0.0722 0.9188
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an elevation of these markers in subclinical myocardial 
damage in diabetes [37, 65]. A study by Selvin et  al., 
demonstrated an incidence of elevated cTn in diabetic 
people [66]. Elevated cTn has a strong correlation with 
the adverse cardiovascular outcome whether a coronary 
disease is present or not [67]. In Table  1, there was an 
insignificant increase in cTnT and cTnI concentration 
between the PD and NPD groups in the current 
study. Interestingly, the concentration of cTnT in PD 
(989.5 ± 48.6  pg/mL) was double the concentration in 
NPD (456.5 ± 250.1  pg/mL) whereas the concentration 
of cTnI in PD (522.2 ± 6.3  pg/mL) is 1 × factor higher 
than the concentration in NPD (496.2 ± 11.3  pg/mL). 
These results suggest cTnT is markedly elevated and is 
a sensitive marker of cardiac injury in prediabetes. In 
Table 1, we reported an insignificant negative association 
between HbA1c and the cardiac troponin (cTnT and 
cTnI) in the NPD group, whereas the association was 
positive in the PD group. This study is per a recently 
published study by Witkowski et al., in which prediabetes 
is associated with major adverse cardiac events (MACE) 
and increasing hs-cTnT levels associated with an 
increased risk for 3-year MACE and 5-year all-cause 
mortality in the entire cohort [68].Interestingly, there was 
no correlation between the levels of hs-cTnT and either 
FBG or HbA1c [69]. Matsumoto observed a significant 
positive correlation between HbA1c and hs-cTnT in 
participants with T2DM. The concentration of hs-cTnT 
was further positively associated with oxidative stress 
markers [70]. These findings contradict the findings of 
this study. We suggest that this could be the difference 
in the study groups, methodology, and hyperglycaemia 
duration.

In a cross-sectional study conducted by Kerr and 
colleagues, there was a significant increase in cTnI 
levels in T2DM compared to non-diabetes subjects 
[71]. These results are different from the findings of 
this study reported in Table 1. We did not find evidence 
of a statistical difference in the concentration of cTnI 
between the NPD and the PD group. We speculate this 
to be because the study consisted of 6 rats per group and 
had intermediate hyperglycaemia whereas Kerr reported 
a cross-sectional study with T2DM participants. Odum 
and Young investigated the level of cTnI, CK-MB and 
myoglobin and their relation to CVD risk in T2DM. 
None of the participants had an elevation of all three 
biomarkers, and only 4.3% had an elevation of two 
biomarkers [72]. In the present study, we analysed cTnT 
and cTnI. Though there was an insignificant increase, 
the concentration of cTnT in the PD group doubled 
the concentration in the NPD group, whereas the 
concentration of cTnI increased by 1. This difference in 

cTn concentration suggests that testing one biomarker 
may not detect the risk or detect the injury.

In a study associating subclinical myocardial injury 
with arterial stiffness in T2DM patients, hs-cTnI had an 
insignificant positive correlation with HbA1c and arterial 
stiffness [73]. These studies follow the present study as we 
did not find a statistically significant association between 
HbA1c and cTnI. Detection of cardiac biomarkers in 
prediabetes indicates a subclinical myocardial injury 
during prediabetes.

Elevated ROS in the cardiac tissue results in cardiac 
oxidative stress, cardiac fibrosis, cardiac dysfunction 
and potentially cardiac events such as MI [55]. This 
study observed increased AR, NOX1, MDA, and 
decreased antioxidant enzymes in the PD group 
compared to the NPD group myocardium. Oxidative 
stress through the polyol pathway is reported to 
decrease SERCA activity, thereby decreasing Ca2+and 
subsequently resulting in contractile dysfunction [74]. 
Contractile dysfunction is also caused by myocardial 
apoptosis and fibrosis [75]. Studies have demonstrated 
that myocardial fibrosis and deranged myofibers 
are hyperglycaemia induced myocardial structural 
changes [76]. In the present study, in Fig. 5 we observed 
disarrayed myofibers and the deposition of fibrous 
networks in the PD myocardium. In contrast, the NPD 
group’s nucleus is centrally located, and the myofibers 
are regularly shaped. This observation aligns with 
Kusaka et  al., who reported that the cardiac tissue 
of the SHrcp rat model of metabolic syndrome with 
prediabetes displayed oxidative stress, inflammation, 
hypertrophy, and fibrosis compared to the control [77].

Conclusion
The findings of this study demonstrate that prediabetes 
is associated with myocardial injury through oxidative 
stress. Future studies are to use immunohistochemistry 
to investigate the cardiac contractile function and 
include more cardiac biomarkers.
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