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Abstract 

Background:  Mounting evidence indicates an association between endothelial dysfunction and the coronary slow 
flow phenomenon (CSFP). In the present study, we aimed to evaluate the possible role of endothelial nitric oxide 
synthase (eNOS) 894G/T and interleukin-1β (IL-1β) 315C/T polymorphisms as possible risk factors for CSFP.

Methods:  This prospective study enrolled patients with CSFP and individuals with normal coronary arteries. Geno-
types were assessed using regular polymerase chain reaction and direct Sanger-sequencing techniques.

Results:  The study population consisted of 267 individuals: 180 patients with CSFP (49 women [27.2%]) at a median 
age of 55 (48–62) years and 87 controls with normal coronary arteries (56 women [64.4%]) at a median age of 47 
(41–58) years. The allelic distribution of eNOS 894G/T was significantly associated with CSFP (odds ratio [OR], 1.58; 95% 
confidence interval (CI), 1.04–2.42; P = 0.03). This polymorphism increased the risk of CSFP under the dominant model 
(OR 1.73; 95% CI I.02–2.95; P = 0.04). However, the allelic frequencies (1.05; 95% CI 0.68–1.59; P = 0.83) and genotypic 
frequencies (0.88; 95% CI 0.52–1.49; P = 0.63) of the IL-1β 315C/T polymorphism were not associated with the inci-
dence of CSFP in the Iranian population.

Conclusions:  The CSFP and control groups were statistically different regarding the eNOS 894G/T polymorphism. Our 
findings also demonstrated that the IL-1β 315C/T polymorphism was not a risk factor for CSFP.

Keywords:  Coronary artery disease, Endothelial dysfunction, Coronary slow flow phenomenon, Endothelial nitric 
oxide synthase, Interleukin-1β, rs1799983, rs1143634
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Introduction
The coronary slow flow phenomenon (CSFP), an uncom-
mon disease, is an angiographic finding characterized 
by the delayed opacification of the distal branch of the 
coronary arteries in the absence of obstructive coronary 
artery disease [1, 2]. It is only found in 7% of patients with 
coronary artery disease undergoing diagnostic angiogra-
phy [3]. CSFP seems to be multifactorial, and its precise 
etiopathological mechanisms have yet to be elucidated 
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[4]. Morphological abnormalities such as fibromuscular 
hyperplasia, medial hypertrophy, myointimal prolifera-
tion, and subclinical atherosclerosis, as well as anatomic 
factors, functional abnormalities, and inflammation, have 
been proposed as the pathogenic factors of the disease [1, 
4, 5]. Mounting evidence indicates common single-nucle-
otide polymorphisms (SNPs) residing in different genes 
as genetic risk factors for CSFP [6–9].

Nitric oxide (NO) is a vasodilator synthesized from 
L-arginine by endothelial nitric oxide synthase (eNOS), 
which is encoded by a single eNOS (NOS3) gene located 
on chromosome 7q35-q36 [10]. One of the most stud-
ied SNPs of eNOS is 894G/T (rs1799983), which results 
in the decreased production of NO and is significantly 
associated with coronary artery disease in different pop-
ulations [11–17]. In addition, numerous studies have 
indicated that the plasma level of NO is significantly 
lower in patients with CSFP than in healthy controls 
[9, 18–20]. The interleukin-1 (IL-1) family comprises a 
group of proinflammatory cytokines composed of α and 
β types. The family, the product of the IL-1 gene, modu-
lates the chronic inflammatory response by increasing 
leukocyte adhesion to damaged endothelia, although sev-
eral mediators are involved in the atherosclerosis process 
and cardiovascular disease [21].

The literature contains conflicting reports on the rela-
tionship between CSFP and eNOS 894G/T (rs1799983, 
Asp298Glu) and IL-1β 315C/T (rs1143634, Phe105 =) 
from studies carried out on different populations across 
the world [7, 9, 22–25].

In the present study, we sought to investigate the asso-
ciation between CSFP and eNOS 894G/T (rs1799983, 
Asp298Glu) and IL-1β 315C/T (rs1143634, Phe105 =) in 
a sample of the Iranian population, divided into patients 
with CSFP and normal individuals.

Methods
Study population
The study population was selected from candidates for 
coronary angiography in Rajaie Cardiovascular Medical 
and Research Center in Tehran, Iran. Patients with val-
vular heart disease, congenital heart disease, arrhythmia, 
connective tissue disease, collagen vascular disease, and 
more than 25% obstruction in the vessel diameter were 
excluded. The control group was chosen from individu-
als in whom diagnostic coronary angiography showed no 
coronary artery disease. Peripheral blood samples were 
taken from all the participants to determine genotypes, 
lipid profiles, cardiac enzyme levels, creatinine levels, 
cell blood counts, and erythrocyte sedimentation rates. 
The blood samples for genetic analysis were preserved at 
– 70 °C.

The study protocol was approved by the Ethics Com-
mittee of Rajaie Cardiovascular Medical and Research 
Center (IR.RHC.REC.1399.075), and the study was con-
ducted in accordance with the Helsinki Declaration.

Definition of CSFP
CSFP was diagnosed via the thrombolysis in myocardial 
infarction frame count (TFC) method.1 Participants with 
a corrected TFC greater than 2 standard deviations from 
the published normal range for the particular vessel were 
considered to have CSFP (the left anterior descending 
coronary artery (LADA) > 36.2 ± 2.6, the left circumflex 
artery (LCx) > 22.2 ± 4.1, and the right coronary artery 
(RCA) > 20.4 ± 3.0).

The standard method was drawn upon for left heart 
catheterization and coronary angiography. CSFP was 
defined based on the TFC method introduced by Gibson 
[26]. The number of cine frames required for the contrast 
to reach the standard landmark in the distal coronary 
artery is termed “TFC.” The first frame in TFC is obtained 
when the contrast material enters the coronary artery 
completely, with the entrance having 3 characteristics: 
(1) The contrast material should fill the full thickness of 
the vessel. (2) The contrast material should be in contact 
with both margins of the vessel. (3) The contrast agent 
should move forward. The last frame is obtained when 
the contrast material enters the distal landmark branch. 
The distal landmark branches are defined for each ves-
sel separately: the last 2 branches for the left anterior 
descending, the last obtuse marginal branch for the left 
circumflex artery, and the first branch of the posterior 
left ventricular branch for the right coronary artery. The 
images were obtained at a rate of 15 frames per second, 
and the results were multiplied by 2. The frame counts of 
the left anterior descending were divided by 1.7 for cor-
rection because of its length. Patients who had a frame 
count above 27 for all vessels were considered to have 
CSFP.

Genotyping of the eNOS and IL‑1β gene polymorphisms
DNA extraction
Genomic DNA was extracted from the peripheral blood 
samples, collected in EDTA tubes, using the salting-out 
method and the Exgene Blood SV Mini Kit (GeneAll, 
Seoul, South Korea). The NanoDrop Spectrophotometer 
(Thermo Fisher Scientific, US) was employed to deter-
mine the quantity of the extracted DNA.

Polymerase chain reaction (PCR) and direct Sanger 
sequencing
Appropriate PCR oligonucleotides were designed to 
amplify the desired part of the IL-1β and eNOS3 genes 
by utilizing the Gene Runner (Gene Runner 6.5.50) 
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and PerlPrimer (PerlPrimer 1.1.21) software tools. Fur-
ther, 5′-AAG​GCA​GGA​GAC​AGT​GGA​TG-3′ (forward), 
5′-CAA​TTT​CCA​GCA​GCA​TGT​TG-3′ (reverse), 5′-CGT​
ATA​TGC​TCA​GGT​GTC​CTC-3′ (forward), and 5′-CAT​
GGA​GAA​TTA​GCA​AGC​TG-3′ (reverse) primers were 
used to amplify the part of eNOS (385 base pairs in 
length) and IL-1β (230 base pairs in length) that covered 
the desired variations with the following thermal pro-
gram: 94  °C for 35  s, 63  °C (eNOS) or 55  °C (the IL-1β 
variant) for 30 s, and 72 °C for 45 s, with a final extension 
at 72 °C for 10 min. Amplicons were electrophoresed on 
a 1.5% agarose gel, stained with ethidium bromide, and 
visualized under ultraviolet light.

All the PCR products were subjected to direct Sanger 
sequencing with the ABI 3500 DNA Sequencer (Applied 
Biosystems, CA, US). The reverse primer of eNOS3 
and the forward primer of IL-1β were used for direct 
sequencing.

Statistical analysis
HGMD [27], NCBI [28], UCSC [29], and VarSome [30] 
databases were utilized to evaluate the selected SNPs and 
the pathogenesis of the selected mutations.

The BioEdit software (BioEdit 7.2.1) was run to ana-
lyze the sequencing outcomes. The results were analyzed 
using the IBM SPSS statistics 26, the GraphPad Prism 9 
software, and the SNPSTAT analyzer [31].

The 1-sample Kolmogorov–Smirnov test was first 
applied to test the normality of the data. Qualitative 
data were presented as numbers and percentages. The 
association between categorical variables was assessed 
using the χ2 test; and if 20% of the cells had the expected 
count of lower than 5, the Fisher exact test was employed. 
Quantitative data were described as the medians (Q1–
Q3) for nonparametric data. The independent samples 
t test was applied to compare the mean values, and the 
Mann–Whitney test was used to compare the median 
values between 2 groups. Additionally, ANOVA and 
Kruskal–Wallis tests were drawn upon to compare the 
mean and median values between more than 2 groups. 
Finally, the multivariable regression analysis was applied 
using STATA 13.

Results
Clinical characteristics of the study population
From 2016 through 2017, a total of 180 patients with 
CSFP (49 women [27.2%]) at a median age of 55 (48–
62) years were enrolled in the CSFP group. From 2016 
through 2018, a total of 87 individuals with normal 
coronary arteries (56 women [64.4%]) at a median age 
of 47 (41–58) years were enrolled in the control group. 
The baseline and clinical characteristics of both groups 
are summarized in Table  1. Table  2 shows the clinical 

and laboratory characteristics of the CSFP group. Both 
groups were similar regarding baseline characteristics 
and laboratory data except for age and sex. The patient 
and control groups were similar in terms of dyslipidemia, 
diabetes mellitus, hypertension, smoking, and a fam-
ily history for coronary artery disease. Additionally, the 
levels of plasma creatinine, triglyceride, and hemoglobin 
were higher in the patients with CSFP than in the con-
trol group. The median value (Q1–Q3) TFC for the left 
anterior descending coronary artery, the left circumflex 
artery, and the right coronary artery was 36 (29–43), 40 
(31–50), and 31.5 (24–40), respectively, in the CSF group.

Allelic and Genotype Distributions of eNOS 894G/T 
and IL‑1β 315C/T
The results concerning the allelic and genotype dis-
tributions of the eNOS3 and IL-1β polymorphisms 
are depicted in Table  3. The genotype frequencies of 
eNOS 894G/T polymorphism was in accordance with 
the Hardy–Weinberg equilibrium in the CSFP group 
(χ2 = 1.484, P = 0.48) and in control group (χ2 = 0.1867, 
P = 0.91). Likewise, the genotype frequencies of IL-1β 
315C/T polymorphism was in line with those predicted 
by the Hardy–Weinberg equilibrium in the CSFP group 
(χ2 = 0.3557, P = 0.84) and in control group (χ2 = 6.446, 
P = 0.04).

In the univariate analysis of eNOS 894G/T, the fre-
quencies of the T allele in the patient and control groups 
were 20% and 29%, respectively, and a significant differ-
ence was found in the allelic distribution of eNOS (odds 
ratio [OR], 1.58; 95% confidence interval [CI], 1.04–2.42; 
P = 0.03). Consequently, the higher presence of the T 
allele of eNOS in the control group hinted at a protec-
tive effect exerted by this allele on the study population. 
In the CSFP and control groups, respectively, the fre-
quency of the G/G genotype was 65% versus 51.7%, the 
frequency of the G/T genotype was 29.4% versus 39.1%, 
and the frequency of the T/T genotype was 5.6% versus 
9.2%. The analysis of the genotype distribution in the 2 
groups demonstrated a significant association between 
the presence of the T allele of eNOS and CSFP (OR 1.73; 
95% CI 1.02–2.95; P = 0.04) in a dominant model. None-
theless, no significant differences were found between the 
recessive model and the codominant model.

In the univariate analysis of IL-1β 315C/T, the fre-
quency of the T allele was estimated to be 24% and 
25% in the patients and controls, respectively, and no 
significant difference was found in the allelic distribu-
tion of IL-1β (P = 0.83). The frequencies of the C/C, 
C/T, and T/T genotypes were 57.9% versus 60.9%, 
35.4% versus 27.6%, and 6.7% versus 11.5% in the 
patients with CSFP and the participants with normal 
coronary arteries, respectively (P = 0.25). Additionally, 
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no significant differences in genotype distribution 
were found in the dominant (P = 0.63), recessive 
(P = 0.19), and codominant (P = 0.25) models between 
the patients and the healthy controls concerning IL-1β.

Furthermore, the association between the CSFP phe-
notype and the combined genotypes of the eNOS and 
IL-1β polymorphisms was assessed, and the results 
were nonsignificant (P = 0.12) (data not shown).

In the multivariable regression analysis, age (OR 
1.08; 95% CI; 1.03 to 1.12; P < 0.01) and the male sex 
(OR 0.22; 95% CI 0.08 to 0.62; P < 0.01) were the only 
independent predictors of CSFP in the study popu-
lation. In addition, no significant associations were 
found between the presence of the mutant allele and 
the wild type for the eNOS and IL-1β polymorphisms 
with the application of the multivariable analysis (OR 
0.46; 95% CI 0.11 to 1.98; P = 0.29 for eNOS, and OR 
0.47; 95% CI 0.13 to 1.7; P = 0.24 for IL-1β) (Table 4).

Relationships Between the eNOS3 864G/T and IL‑1β 315C/T 
Genotypes and TFC and Electrocardiographic Findings 
in the CSFP Group
According to the univariate analysis, the median values 
of TFC for the left anterior descending (P = 0.80), the 
left circumflex (P = 0.16), and the right coronary artery 
(P = 0.80) were not significantly different between the 
individuals with different genotypes of eNOS 894G/T. 
Moreover, no significant differences were found in terms 
of the median values of TFC for the left anterior descend-
ing (P = 0.53) and the left circumflex (P = 0.11) between 
the genotypes of IL-1β 315C/T. However, the median 
value of TFC for the right coronary artery was different 
between the IL-1β genotypes (P < 0.01; Table 5).

Sex (coefficient, − 3.48; 95% CI − 7.06 to 0.11; 
P = 0.05) was the only predictor of TFC for the left 
anterior descending, and no statistically significant 
associations were found between TFC for the left 

Table 1  Comparison of baseline characteristics and lab data between the CSFP and control groupsa,b

CSFP: coronary slow flow phenomenon; CAD: coronary artery disease
a Continuous variables are presented as the median (Q1–Q3)
b Categorical variables are presented as numbers (%)
c Family history of coronary artery diseases (CAD): the presence of CAD in a first-degree male or female relative before age 55 or 65 years, respectively
d Normal ranges of the measured lab tests were defined as follows: < 100 mg/dL for fasting blood sugar, 0.6–1.4 mg/dL for plasma creatinine, < 150 mg/dL for 
triglyceride, < 200 mg/dL for total cholesterol, > 60 mg/dL for high-density lipoprotein, < 110 mg/dL for low-density lipoprotein, 13.5–17.5 g/dL for men and 12–15.6 g/
dL for women for the hemoglobin level, 4500–11,000 cells/mm3 for the white blood cell count, 150–450 103/fL for the platelet count, < 22 mm/h for men and 29 mm/h 
for women for the erythrocyte sedimentation rate

Characteristics Total
(N = 267)

CSFP Group
(n = 180)

Control Group
(n = 87)

P value

Demographic

 Age (years) 52 (46–61) 55 (48–62) 47 (41–58) < 0.001

  Female/Male
n (%)

105 (39.3)/ 162 (60.7) 49 (27.3)/ 131 (72.8) 56 (64.4)/ 31 (35.6) < 0.001

  Dyslipidemia (%) 87 (32.6) 63 (35) 24 (27.6) 0.41

  Diabetes mellitus (%) 78 (29.2) 52 (28.9) 26 (29.9) 0.56

  Hypertension (%) 118 (44.2) 76 (42.2) 42 (48.3) 0.12

  Smoking status (%) 56 (21.0) 43 (23.9) 13 (14.9) 0.11

  Family history for CADc (%) 74 (27.7) 55 (30.6) 19 (21.8) 0.26

Laboratory Testsd

 Fasting blood sugar (mg/dL) 106 (95–134.5) 109 (95–135) 102.5 (94.75–132.75) 0.37

 Plasma creatinine (mg/dL) 1 (0.9–1.2) 1 (0.9–1.2) 0.9 (0.8–1) < 0.001

 Triglyceride (mg/dL) 128 (88–181) 140 (95.5–192) 111 (78–156) < 0.01

 Total cholesterol (mg/dL) 138.5 (116.25–163.75) 141 (116.5–168) 133 (115–155) 0.08

 High-density lipoprotein-cholesterol (mg/dL) 38 (34–42) 38 (34.6–42) 37 (32–42) 0.33

 Low-density lipoprotein-cholesterol (mg/dL) 76 (57–95) 77 (57–98) 72 (57–91) 0.26

 Hemoglobin (g/dL) 14.1 (12.8–15.2) 14.2 (13.2–15.3) 13.2 (12.12–14.77) < 0.001

 White blood cell (cells/mm3) 6800 (5675–8125) 6800 (5700–7900) 6900 (5600–8400) 0.71

 Platelet (× 103/mm3) 219 (182–257.5) 216.5 (180–251.25) 225 (188.25–269.75) 0.15

 Erythrocyte sedimentation rate (mm/h) 10 (5–17) 10 (5–15) 12 (6–18.75) 0.04
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anterior descending and the presence of the T allele of 
the eNOS 864 T/G polymorphism, the presence of the 
mutant allele of the IL-1β 315C/T polymorphism, body 
mass index, systolic blood pressure, and left ventricular 
ejection fraction in the multivariable regression analy-
sis (P > 0.05) (Additional file 1: Table S1).

Further, all 180 patients with CSFP underwent elec-
trocardiography. Among them, ST-T changes were pos-
itive in 43 patients (23.9%), of whom 17 (39.5%) had the 
T allele in the eNOS3 locus. No significant differences 
were noted in electrocardiographic findings between 
the eNOS3 genotypes.

Similar to the eNOS results, no significant asso-
ciations were found in electrocardiographic findings 
between the different genotypes of the studied IL-1β 

SNP. The distribution of the IL-1β genotypes was simi-
lar among those with a positive ST-T change finding 
(P = 0.26).

Discussion
In the present study, we examined the association 
between CSFP and eNOS3 (894G/T) and IL-1β (315C/T) 
polymorphisms in a sample of the Iranian population. 
Our results indicated that the distribution of the Asp-
298Glu variant of the eNOS gene was significantly dif-
ferent between patients with CSFP and controls with 
normal coronary arteries. Further, the mutant allele T of 
eNOS 894G/T polymorphism was lower in the CSFP sug-
gesting that this polymorphism is protective. While there 
was no significant association between the IL-1β gene 
(315C/T) variant and CSFP in our studied population. 
We also assessed associations in diagnostic tests, clinical 
information, and lab data between the eNOS3 (894G/T) 
and IL-1β (315C/T) variants and found no significant 
associations.

CSFP was first defined by Tambe et  al. in 1972 as a 
delay in the progression of the contrast dye injected into 
the coronary arteries during coronary angiography with-
out any obstructive disease [32]. The phenomenon is 
diagnosed mainly with an increased TFC. Although the 
etiology and pathogenesis of CSFP are not well-known, 
impaired balances between vasoconstrictor and vasodi-
lator factors and increased inflammatory markers have 
been suggested [4, 9, 33]. Urotensin-II, as a potent vaso-
constrictor, has been reported as a possible risk factor 
for CSFP (OR 1.01; 95% CI 1.00–1014; P = 0.01) [34]. 
Furthermore, aortic pulse pressure and the pulsatility 
index in patients with CSFP tend to rise remarkably due 
to endothelial dysfunction. The role of inflammation in 
the pathophysiology of CSFP was expounded by Aksn 
G et  al., who found that the serum levels of neutrophil 
gelatinase-associated lipocalin, as an inflammatory bio-
marker, were significantly higher in patients with CSF 
than in those with a normal coronary flow [35]. In addi-
tion, the hematocrit level, as well as erythrocyte, eosino-
phil, and basophil counts, was increased in patients with 
CSF compared with the group with a normal coronary 
flow, which may support the previous hypothesis [36]. 
Substantial evidence suggests that the eNOS Glu298Asp 
polymorphism is responsible for endothelial dysfunction 
[37–39].

NO plays a significant role as a vasorelaxation fac-
tor and has a protective effect on atherogenesis [40]. It 
has been shown that several polymorphisms of eNOS 
(NOS3) affect the serum level of NO [41]. Notably, 
the eNOS Asp298Glu polymorphism may be associ-
ated with CSFP in that it decreases the serum levels of 

Table 2  Clinical, laboratory, and angiographic characteristics of 
the CSFP groupa,b

CSFP coronary slow flow phenomenon, PCI percutaneous coronary intervention, 
MI myocardial infarction, HF heart failure, BMI body mass index, hs-CRP 
high-sensitivity C-reactive protein, LVEF left ventricular ejection fraction, TFC 
thrombolysis in myocardial infarction frame count
a Continuous variables are presented as the median (Q1–Q3)
b Categorical variables are presented as numbers (%)
c Weight (in kilograms) divided by the square of the height (in meters)

Characteristics Patients

Clinical

Chest pain

 Typical 107 (59.4)

 Atypical 59 (32.8)

Dyspnea 58 (32.2)
Palpitation 8 (4.4)

Past medical history

 Prior PCI 14 (7.8)

 Prior MI 10 (5.6)

 HF 1 (0.6)

BMIc 28.3 (25.7–30.97)

Baseline hemodynamics

 Systolic blood pressure (mm Hg) 125 (119–135)

 Diastolic blood pressure (mm Hg) 80 (70–80)

Laboratory and Echocardiography Characteristics

 hs-CRP 1.7 (0.7–4)

Positive cardiac enzyme 24 (13.3)

LVEF 50 (50–55)

Angiographic characteristics

TFC

 Left anterior descending artery 36 (29–43)

 Left circumflex artery 40 (31–50)

 Right coronary artery 31.5 (24–40)

Single-vessel slow flow coronary artery 15 (8.3)

Double-vessel slow flow coronary arteries 57 (31.7)

Triple-vessel slow flow coronary arteries 108 (60)
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NO. Moreover, the IL-1β gene, which releases IL-1β as 
a proinflammatory agent, is associated with cardiovas-
cular diseases, including coronary artery disease, stent 
restenosis after percutaneous coronary interventions, 
carotid artery disease, lone atrial fibrillation, and CSFP 
[42–45]. In addition, the 315C/T nucleotide transition 
of the IL-1β gene probably modulates IL-1β protein 
synthesis and is associated with such cardiovascular 

diseases as CSFP, coronary artery disease, and myocar-
dial infarction [25, 46–49].

Previous studies have also indicated the role of genetic 
predisposing factors in the occurrence of CSFP [22–24, 
50].

There are dissimilarities in the frequencies of eNOS3 
894G/T alleles in different races. Such differences have 
given rise to controversy as regards the application of the 
G allele as a mutant. The VarSome database recognizes 

Table 3  Distributions of the eNOS3 864G/T and IL-1β 315C/T alleles and genotypes in the CSFP and control groups

CSFP coronary slow flow phenomenon
a Significant P values if ≤ 0.05
b OR: odds ratio, 95% CI 95%: confidence interval
c Hardy–Weinberg equilibrium

Patients With CSFP; N (%) Controls; N (%) OR (95% CI)b P valuea

eNOS 894G/T

Allele Frequency

 G 287 (80) 124 (71) 1.00 0.03

 T 73 (20) 50 (29) 1.58 (1.04–2.42)

 Total 360 (100) 174 (100)

Genotypes (codominant)

 G/G 117 (65) 45 (51.7) 1.00 0.11

 G/T 53 (29.4) 34 (39.1) 0.60 (0.35–1.04)

 T/T 10 (5.6) 8 (9.2) 0.48 (0.18–1.30)

 Total 180 (100) 87 (100)

Genotypes (dominant)

 G/G 117 (65) 45 (51.7) 1.00 0.04

 G/T-T/T 63 (35) 42 (48.3) 1.73 (1.02–2.95)

Genotypes (recessive)

 G/G-G/T 170 (94.4) 79 (90.8) 1.00 0.27

 T/T 10 (5.6) 8 (9.2) 1.72 (0.66–4.68)

HWEc X2 = 1.484, P = 0.48 X2 = 0.1867, P = 0.91

IL-1β 315C/T

Allele Frequency

 C 269 (76) 130 (75) 1.00 0.83

 T 87 (24) 44 (25) 1.047 (0.68–1.59)

 Total 356 (100) 174 (100)

Genotype(codominant)

 C/C 103 (57.9) 53 (60.9) 1.00 0.25

 C/T 63 (35.4) 24 (27.6) 1.73 (0.84–3.56)

 T/T 12 (6.7) 10 (11.5) 0.81 (0.26–2.52)

 Total 178 (100) 87 (100)

Genotype(dominant)

 C/C 103 (57.9) 53 (60.9) 1.00 0.63

 C/T-T/T 75 (42.1) 34 (39.1) 0.881 (0.52–1.49)

Genotype (recessive)

 C/C–C/T 166 (93.3) 77 (88.5) 1.00 0.19

 T/T 12 (6.7) 10 (11.5) 1.797 (0.73–4.10)

HWEc X2 = 0.3557, P = 0.84 X2 = 6.446, P = 0.04
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the T allele as the reference allele, and the Iranome data-
base also cites the same allele for the Iranian population. 
[51, 52]. However, the T allele has been reported as a pos-
sible risk factor for stroke and periventricular white mat-
ter hyperintensities [53, 54]. Marwa Ben et al. concluded 
that eNOS3 894G/T was significantly associated with 
coronary artery disease in additive and dominant models 
(but not in recessive models), concordant with our find-
ings [55]. In Pakistan, Nawaz et al. reported that the fre-
quency of the T allele was higher than that of the G allele 
and introduced the TT genotype as a strong risk factor 
for coronary artery disease [56]

Controversy, however, abounds regarding the associa-
tion between CSFP and eNOS3 894G/T SNPs in differ-
ent populations. In samples of the Turkish population, 
Caglayan et  al. and subsequently Sezgin et  al. reported 
no associations between 894G/T SNP and CSFP [9, 57]. 

Caglayan and colleagues assessed 85 individuals, consist-
ing of 66 patients with CSFP and 19 subjects with nor-
mal coronary arteries, while they excluded patients with 
diabetes mellitus; hypertension; coronary artery disease 
history; coronary ectasia; atrial fibrillation; complete 
bundle branch block; serious conduction defects; mitral 
valve prolapse; hypertrophic, restrictive, and dilated car-
diomyopathies; left ventricular hypertrophy; ejection 
fractions less than 50%; and pulmonary, renal, hepatic, 
and hematological disorders. In this study, the frequency 
of the variant allele was 0.41 and 0.38 in the control and 
patient groups, respectively. No statistically significant 
differences were found in allelic and genotype distribu-
tions between the CSFP and control groups. Sezgin and 
colleagues recruited 30 patients with CSFP and no other 
cardiac disease and 61 control subjects and reported no 
association between eNOS intron 4 VNTR and 894G/T 

Table 4  Multivariable logistic regression analyses of the possible predictors of CSFP in the study population

CSFP coronary slow flow phenomenon, FH of CAD family history of coronary artery disease, DLP dyslipidemia, DM diabetes mellitus, HTN hypertension, FBS fasting 
blood sugar, Cr creatinine, LDL low-density lipoprotein, Hb hemoglobin, WBC white blood cell, ESR erythrocyte sedimentation rate

Variables OR (95% CI) P value

Presence of allele ‘T’ of the eNOS 864G/T polymorphism 0.46 (0.11–1.98) 0.29

Presence of allele ‘T’ of the IL-1β 315C/T polymorphism 0.47 (0.13–1.7) 0.24

Interaction of eNOS 864G/T and IL-1β 315C/T 1

Age 1.08 (1.03–1.12) < 0.01

Gender 0.22 (0.08–0.62) < 0.01

Smoking 1.17 (0.48–2.83) 0.73

FH of CAD 2.15 (0.92–5.03) 0.07

DLP 1.16 (0.51–2.63) 0.72

DM 0.49 (0.19–1.25) 0.13

HTN 0.74 (0.33–1.64) 0.45

FBS 1.0 (0.99–1.01) 0.15

Cr 2.51 (0.4–15.77) 0.32

LDL-cholesterol 1.01 (1–1.03) 0.05

Hb 1.10 (0.81–1.50) 0.52

WBC 1 (1–1) 0.96

Platelet (× 103) 1.0 (0.99–1.01) 0.79

ESR 1.01 (0.96–1.05) 0.77

Table 5  Relationships between the eNOS3 864G/T and IL-1β 315C/T genotypes and TFC findings of the CSFP groupa

TFC thrombolysis in myocardial infarction frame count, LAD left anterior descending artery, LCx left circumflex artery, RCA​ right coronary artery
a Categorical variables are presented as numbers (%)
b Significant P values if ≤ 0.05

TFC, median 
(Q1–Q3)

eNOS 894G/T IL-1β 315C/T

G/G G/T T/T P valueb C/C C/T T/T P valueb

LAD 35 (29–45) 37.5 (29–43.75) 37.5 (29–51.75) 0.80 38 (30–43.5) 35 (29–41) 37.5 (29–51.75) 0.53

LCx 40 (32–50) 37 (30–48) 46 (36–61.5) 0.16 40 (32–50) 38 (30–44) 46 (36–61.5) 0.11

RCA​ 32 (24–40) 30 (23.5–40) 25.5 (16.5–28) 0.80 32 (25.5–41) 30 (22–40) 25.5 (16.5–28) < 0.01
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polymorphisms. Nevertheless, the plasma levels of NO 
were significantly lower in the CSFP group than in the 
control group (P < 0.05). In contrast, Gupta et al. reported 
a strong association between this nucleotide transi-
tion and CSFP in the North Indian population and sug-
gested the T allele as an independent risk factor for CSFP 
[24]. This study assessed 27 patients with CSFP and 200 
individuals as the control group. The exclusion crite-
ria were the same as those in the study by Caglayan and 
colleagues. The results showed a significant association 
between the presence of the T allele and CSFP (P = 0.014; 
w2 = 6.1). Our findings are different from those reported 
by the investigations in Turkey, but they chime in with 
those reported by Gupta and colleagues.

Mutluer et  al. revealed an association between the 
rs1143634 of the IL-1β gene and CSFP in the Turkish 
population [48]. A study on the Han Chinese popula-
tion reported an association between the IL-10 polymor-
phism and CSFP [45]. In contrast to the investigation in 
the Turkish population, our results showed no associa-
tion between the 315C/T (rs1143634) of the IL-1β gene 
polymorphism and CSFP. It is worthy of note that had 
we recruited a larger population, our analysis might have 
yielded different results. To the best of our knowledge, 
this is the first report on the association between eNOS 
894G/T and CSFP in the Iranian population. A previous 
investigation in Iran examined the predictive power of 
2 common polymorphisms of the eNOS gene in relation 
to CSFP after primary percutaneous coronary interven-
tions and reported no associations between CSFP and 
the 894G/T and − 786T/C polymorphisms of the eNOS 
gene [58]. Heidari et  al. found an association between 
the − 813C/T (rs2070744) and 894G/T (rs1799983) pol-
ymorphisms of the eNOS gene and multiple sclerosis in 
Iranian patients [59]. In another study, no association 
was found between the 894G/T eNOS polymorphism and 
coronary artery disease in the northern Iranian popu-
lation [60]. Accumulating evidence indicates that the 
Asp298Glu SNP of the eNOS gene is associated with cor-
onary artery disease, ST-segment-elevation myocardial 
infarction, hypertension, coronary vasospasm, impaired 
coronary collateral development, impaired coronary 
blood flow, and obesity [14, 61–67].

Limitations
The observational nature of our investigation and its 
limited sample size precluded us from drawing a firm 
conclusion. Indeed, our results should be tested in a 
larger population to confirm the association between 
the studied eNOS gene polymorphisms and the IL-1β 
nucleotide transition. Additionally, the associations 
between the Asp298Glu transition of the eNOS gene 

and the plasma nitric oxide level and nitric oxide syn-
thase activity were not assessed in this study due to 
technical and financial limitations. Finally, our results 
might have been influenced by dissimilarities between 
the patient and control groups.

Conclusions
The present preliminary study is the first to suggest an 
association between the 894G/T eNOS gene polymor-
phism and CSFP in the Iranian population. However, 
our results demonstrated no association between CSFP 
and the 315C/T IL-1β gene variant. Further, the allelic 
distribution and the presence of the variant allele of the 
894G/T eNOS gene polymorphism were statistically 
associated with CSFP.
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