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High serum levels 
of N‑epsilon‑carboxymethyllysine are 
associated with poor coronary collateralization 
in type 2 diabetic patients with chronic total 
occlusion of coronary artery
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Abstract 

Background:  The formation of advanced glycation end-products (AGEs) is a crucial risk factor for the pathogenesis 
of cardiovascular diseases in diabetes. We investigated whether N-epsilon-carboxymethyllysine (CML), a major form of 
AGEs in vivo, was associated with poor coronary collateral vessel (CCV) formation in patients with type 2 diabetes mel‑
litus (T2DM) and chronic total occlusion (CTO) of coronary artery.

Methods:  This study consisted of 242 T2DM patients with coronary angiographically documented CTO. Blood 
samples were obtained and demographic/clinical characteristics were documented. The coronary collateralization 
of these patients was defined according to Rentrop or Werner classification. Serum CML levels were evaluated using 
ELISA assay. Receiver operating characteristic curve and multivariable regression analysis were performed.

Results:  242 patients were categorized into poor CCV group or good CCV group (107 vs. 135 by the Rentrop clas‑
sification or 193 vs. 49 by the Werner classification, respectively). Serum CML levels were significantly higher in 
poor CCV group than in good CCV group (110.0 ± 83.35 vs. 62.95 ± 58.83 ng/ml by the Rentrop classification and 
94.75 ± 78.29 ng/ml vs. 40.37 ± 28.69 ng/ml by Werner classification, both P < 0.001). Moreover, these CML levels were 
also significantly different across the Rentrop and Werner classification subgroups (P < 0.001). In multivariable logistic 
regression, CML levels (P < 0.001) remained independent determinants of poor CCV according to the Rentrop or Wer‑
ner classification after adjustment of traditional risk factors.

Conclusions:  This study suggests that higher serum CML level is associated with poor collateralization in T2DM 
patients with CTO.
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Introduction
Diabetes causes impairment of coronary collateral ves-
sel (CCV) formation in response to occlusion of a pat-
ent artery in patients with coronary artery disease [1]. 
Good CCV formation is functionally important to 
provide myocardial protection against infarction and 
increase patients’ survival rates [2]. Previous studies 
have evidenced that dysregulation of pro-angiogenic and 
anti-angiogenic elements contributes to poor CCV in 
ischemic tissues in diabetes [3, 4]. Pathophysiologically, 
this pathologic feature is caused by increased formation 
and accumulation of advanced glycation end products 
(AGEs) and augmentation of oxidative stress and inflam-
matory reactions [3, 4].

In the diabetic milieu, AGEs play a central role in the 
pathophysiology of vascular complications including 
post-ischemia angiogenesis and arteriogenesis impair-
ment [5–7]. Engagement of the receptor for AGEs 
(RAGE) with AGEs activates pathways in endothelial 
cells or macrophages, leading to augmented oxidative 
stress and inflammation in ischemic myocardial tissues, 
ending up with poor collateralization [5, 6].

N-epsilon-carboxymethyllysine (CML) is the most 
abundant AGEs in  vivo [8]. In diabetic condition, 
CML-modified proteins may exhibit structural altera-
tions, thereby resulting in dysfunction of these proteins. 
Moreover, CML-modified protein also activates RAGE 
pathway, jointly accelerating the development of various 
vasculopathies (i.e., macrovascular and microvascular 
diseases) in diabetes [5, 9–13]. However, the relation of 
CML to coronary collateralization in diabetic patients 
with chronic total occlusion (CTO) remains unclear.

In the present study, we performed coronary angiog-
raphy and used the Rentrop and the Werner classifica-
tion to assess the condition of CCV formation in T2DM 
patients with CTO. The serum levels of CML were evalu-
ated via ELISA in the participants. Our study was pur-
posed to explore the relationship between serum CML 
levels and coronary collateralization in T2DM patients 
with CTO.

Methods
Study population and grouping
The study protocol was approved by the Ruijin Hospital 
and Shanghai Jiao Tong University School of Medicine 
Ethics Committee, and written informed consent was 
obtained from all participants.

A total of 615 T2DM patients with stable angina and 
at least one lesion with coronary angiographic total 
occlusion were enrolled between January 2012 and 
December 2019. This inclusion criterion was based on 
long-standing knowledge that a severe coronary artery 
obstruction was a prerequisite for spontaneous collateral 
recruitment [14]. Stable angina was diagnosed accord-
ing to the criteria recommended by the American Col-
lege of Cardiology/American Heart Association [15]. For 
the purpose of this research, we excluded patients with 
chronic heart failure (n = 69), pulmonary heart disease 
(n = 25), malignant tumors or immune system disorders 
(n = 71), renal failure requiring hemodialysis (n = 34) 
as well as patients who had a history of coronary artery 
bypass grafting (n = 79) or received percutaneous coro-
nary intervention within the prior 3  months (n = 95). 
The remaining 242 diabetic patients with stable angina 
and CTO (> 3  months) were eligible and categorized in 
this study (Fig. 1). The diagnosis of T2DM and hyperlipi-
demia were made according to the 2016 guideline of ESC 
[16] and 2017 update of ESC/EAS on PCSK 9 inhibition 
[17]. Type 1 diabetes was excluded by measurement of 
C-peptide levels. Detailed information regarding demo-
graphics, clinical manifestation and medications used 
was obtained.

Coronary angiography
Coronary angiography was performed through the femo-
ral or radial approach. All angiograms were reviewed by 
two experienced interventional cardiologists, according 
to lesion classification scheme of the American College 
of Cardiology/American Heart Association [18]. Both 
of them were blinded to the study protocol and clinical 
data. Any differences in interpretation were judged by a 
third reviewer.

The condition of CCV was determined using the Ren-
trop classification as in previous studies [19–21], as fol-
lows: grade 0 = no collaterals, grade 1 = side branch 
filling of the recipient artery without visualization of the 
epicardial artery, grade 2 = partial filling of the main epi-
cardial coronary artery, grade 3 = complete filling of the 
main epicardial coronary artery [22]. The Werner clas-
sification was graded as: coronary collateral (CC) 0, no 
visible connection between the donor and the recipient 
coronary artery; CC1, thread-like connection between 
the donor and the recipient coronary artery; CC2, side-
branch like connection between the donor and the recip-
ient coronary artery [23].

Keywords:  Type 2 diabetes mellitus, Chronic total occlusion, Coronary collateral vessel, N-epsilon-
carboxymethyllysine
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Patients with Rentrop 0–1 or CC 0–1 were catego-
rized as poor CCV group and those with Rentrop 2–3 
or CC 2 were referred to good CCV group. Thus, the 
present study contained 242 patients with 107 in poor 
CCV group according to the Rentrop classification and 
193 according to the Werner classification.

Sample acquisition and biochemical measurement
Blood samples were obtained from patients undergo-
ing angiography after 12  h of fasting. Samples were 
collected by centrifugation at the speed of 3000  rpm 
for 10  min. All serum samples were stored at − 80  °C 
until analysis. Serum glucose, glycosylated hemo-
globin A1c (HbA1c), blood urea nitrogen, creatinine, 
uric acid, and lipid profiles were measured with stand-
ard laboratory techniques on a Hitachi 912 Analyzer 
(Roche Diagnostics, Germany). Modified estimated 
glomerular filtration rate (eGFR) was calculated.

CML Quantification
Serum CML levels were measured with Cell BioLabs 
CML Competitive ELISA kit (STA-816) according to 
the manufacturer’s instructions. The CML ELISA kit 
used a colorimetric immunoassay method and CML lev-
els of samples were determined by comparing samples 
OD values with a standard curve of gradient dilution of 
CML-modified BSA, in which higher CML modification 
correlates with lower OD signal. The final CML levels 
were shown with ng/ml unit by calculation of CML-mod-
ified BSA/CML. The inter-assay variation was controlled 
in an acceptable range.

Statistical analysis
Continuous variables are presented as mean ± standard 
deviation (SD), and categorical data are summarized as 
frequency (percentage). For categorical clinical varia-
bles, differences between groups were evaluated by the 
chi-square test followed by Bonferroni’s correction. For 

Fig. 1  Flowchart of patient enrollment
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Table 1  (A) Characteristics and parameters of patients categorized by the Rentrop classification; (B) characteristics and parameters of 
patients categorized by the Werner classification

(A)

Poor CCV
(n = 107)

Good CCV
(n = 135)

P value

Male, n (%) 74 (69.16) 114 (84.44) 0.005
Age, years 67.31 ± 11.22 64.19 ± 10.10 0.024
BMI, kg/m2 25.25 ± 3.74 24.98 ± 3.34 0.546

Smoking, n (%) 41 (38.32) 34 (25.19) 0.036
Hypertension, n (%) 71 (66.36) 106 (78.52) 0.041
SBP, mmHg 134.93 ± 21.58 136.06 ± 19.96 0.672

DBP, mmHg 73.45 ± 10.55 75.11 ± 11.43 0.246

FBG, mmol/L 8.44 ± 3.41 7.69 ± 2.77 0.060

HbA1c, % 6.95 ± 1.43 6.37 ± 1.58 0.003
Dyslipidemia, n (%) 29 (27.10) 22 (16.30) 0.056

Triglyceride, mmol/L 1.77 ± 0.93 1.70 ± 1.22 0.650

Total cholesterol, mmol/L 3.98 ± 1.29 3.87 ± 1.08 0.496

LDL-C, mmol/L 2.33 ± 1.05 2.25 ± 0.89 0.516

HDL-C, mmol/L 1.01 ± 0.20 1.06 ± 0.28 0.133

ApoA, g/L 1.12 ± 0.22 1.15 ± 0.23 0.312

ApoB, g/L 0.80 ± 0.27 0.77 ± 0.23 0.367

Lp(a), g/L 0.36 ± 0.86 0.30 ± 0.29 0.411

BUN, mmol/L 7.18 ± 4.84 6.93 ± 3.77 0.648

Serum creatinine, μmol/L 101.74 ± 53.74 85.10 ± 66.51 0.037
eGFR, ml·min−1·1.73 m−2 68.51 ± 20.80 85.17 ± 20.49  < 0.001
UA, μmol/L 348.69 ± 104.15 338.62 ± 97.02 0.438

hsCRP, mg/L 14.58 ± 33.21 7.14 ± 20.63 0.034
Medication, n (%)

ACE inhibitor/ARB 59 (55.14) 61 (45.19) 0.124

β-blocker 81 (75.70) 90 (66.67) 0.125

Nitrate 45 (42.06) 53 (39.26) 0.660

Calcium channel blocker 20 (18.69) 24 (17.78) 0.855

Statins 80 (74.77) 105 (77.78) 0.583

Antidiabetic therapy 107 (100.00) 135 (100.00) /

(B)

Poor CCV
(n = 193)

Good CCV
(n = 49)

P value

Male, n (%) 145 (75.13) 43 (87.76) 0.082
Age, years 65.96 ± 11.03 64.04 ± 9.23 0.263

BMI, kg/m2 25.04 ± 3.56 25.35 ± 3.34 0.575

Smoking, n (%) 69 (35.75) 6 (12.24) 0.002
Hypertension, n (%) 137 (70.98) 40 (81.63) 0.152

SBP, mmHg 135.80 ± 21.01 134.59 ± 19.38 0.715

DBP, mmHg 74.19 ± 10.90 75.10 ± 11.75 0.608

FBG, mmol/L 8.03 ± 3.20 7.71 ± 2.43 0.509

HbA1c, % 6.76 ± 1.55 6.10 ± 1.37 0.007
Dyslipidemia, n (%) 45 (23.32) 6 (12.24) 0.116

Triglyceride, mmol/L 1.74 ± 0.97 1.72 ± 1.52 0.912

Total cholesterol, mmol/L 3.98 ± 1.24 3.68 ± 0.89 0.112

LDL-C, mmol/L 2.35 ± 1.01 2.04 ± 0.69 0.048
HDL-C, mmol/L 1.02 ± 0.24 1.09 ± 0.27 0.080
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continuous variables, normal distribution was evalu-
ated with the Kolmogorov–Smirnov test. Differences 

among groups were analyzed by one-way analysis of 
variance (ANOVA) followed by post-hoc analysis (Bon-
ferroni’s correction). Receiver operating character-
istic (ROC) curves were plotted to assess the power 
of CML for detecting poor CCV and to compare its 
power when CML was added or not added into com-
bined risk factors (Model 2 and Model 4, versus Model 
1 and Model 3). Area under the curve (AUC) was com-
pared using the DeLong method. Risk factors for CAD 
including gender, age, body mass index (BMI), hyper-
tension, smoking, HbA1c, eGFR and high-sensitivity C 
reactive protein (hsCRP) were recruited into multivari-
able logistic regression analyses with or without CML 
measurements to assess determinants for poor CCV. 
All analyses used 2-sided tests with alpha value set at 
0.05. All statistical analyses were performed with IBM 
SPSS Version 26 for Mac (IBM SPSS Inc, Chicago, IL, 
USA) and Prism 9 for macOS (1994–2021 GraphPad 
Software, LLC).

Results
Baseline characteristics
The characteristics and parameters of patients with poor 
CCV or good CCV categorized according to the Rent-
rop or the Werner classification are presented in Table 1. 
Patients of poor CCV group according to the Rentrop 
classification were older and more smokers, had lower 
ratio of male and hypertension, with poor glycemic 

Table 1  (continued)

(B)

Poor CCV
(n = 193)

Good CCV
(n = 49)

P value

ApoA, g/L 1.13 ± 0.22 1.17 ± 0.23 0.187

ApoB, g/L 0.80 ± 0.26 0.71 ± 0.18 0.022
Lp(a), g/L 0.34 ± 0.67 0.28 ± 0.32 0.547

BUN, mmol/L 7.10 ± 4.49 6.52 ± 1.89 0.377

Serum creatinine, μmol/L 96.90 ± 67.79 74.98 ± 17.30 0.026

eGFR, ml·min−1·1.73 m−2 75.04 ± 22.85 88.68 ± 15.23  < 0.001
UA, μmol/L 346.85 ± 102.83 327.98 ± 78.58 0.232

hsCRP, mg/L 11.73 ± 29.00 5.32 ± 17.18 0.140

Medication, n (%)

ACE inhibitor/ARB 99 (51.30) 21 (42.86) 0.338

β-blocker 141 (73.06) 30 (61.22) 0.116

Nitrate 76 (39.38) 22 (44.90) 0.517

Calcium channel blocker 36 (18.65) 8 (16.33) 0.837

Statins 144 (74.61) 41 (83.67) 0.257

Antidiabetic therapy 193 (100.00) 49 (100.00) /

Data are mean ± SD or number (%); P values were in bold if P < 0.05

CCV coronary collateral vessel, BMI body mass index, SBP systolic blood pressure, DBP diastolic blood pressure, FBG fasting blood glucose, HbA1c glycosylated 
hemoglobin A1c, LDL-C low-density lipoprotein cholesterol, HDL-C high-density lipoprotein cholesterol, BUN blood urea nitrogen, UA uric acid, eGFR estimated 
glomerular filtration rate, hsCRP high-sensitivity C reactive protein

Fig. 2  Serum CML levels. a CML levels in poor and good CCV groups 
categorized by the Rentrop score and the Werner score; b CML level 
distributions in the Rentrop scores and the Werner scores
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control, exhibited higher serum levels of creatinine 
and hsCRP but lower eGFR values in comparison with 
those of good CCV group (for all comparison, P < 0.05). 
Whereas, more Smoking, poor glycemic control, high 
levels of LDL-C, apoB, and creatinine, and low eGFR 
were manifested in poor CCV group according to the 
Werner classification (for all comparison, P < 0.05).

Serum CML levels are significantly increased in patients 
with poor CCV
Serum CML levels were significantly increased in poor 
CCV group (110.0 ± 83.35  ng/ml by the Rentrop clas-
sification and 94.75 ± 78.29 ng/ml by the Werner classi-
fication) than in good CCV group (62.95 ± 58.83  ng/ml 
by the Rentrop classification and 40.37 ± 28.69 ng/ml by 
the Werner classification, both P < 0.001) (Fig. 2a). CML 
levels were also significantly different across the sub-
groups categorized according to the Rentrop classifica-
tion (Rentrop score 0, 120.8 ± 75.12 ng/ml; Rentrop score 
1, 101.8 ± 88.78 ng/ml; Rentrop score 2, 67.01 ± 64.78 ng/
ml; Rentrop score 3, 59.07 ± 52.70  ng/ml, respectively) 
and the Werner score (CC0, 107.50 ± 84.43; CC1, 
75.69 ± 65.51; CC2, 40.90 ± 29.98, respectively) (both P 
for trend < 0.001) (Fig. 2b).

The percentage of poor CCV increased stepwise 
from the lowest tertile to the highest tertile of CML in 
both classifications before and after adjustment of mul-
tiple variables including gender, age, BMI, smoking, 
hypertension, HbA1c, eGFR and hsCRP levels (all P for 
trend < 0.001) (Table 2).

ROC curve for detecting poor CCV exhibited that 
AUC was 0.70 (95% CI 0.64–0.77, P < 0.001) for CML by 

the Rentrop classification and 0.73 (95% CI 0.66–0.80, 
P < 0.001) by the Werner classification. The cutoff values 
were 59.51 ng/ml and 60.24 ng/ml according to Youden’s 
index with a diagnostic sensitivity of 71.03% or 58% and 
specificity of 65.93% or 83.7%, respectively (Fig. 3a).

Multivariable analysis
Multivariate logistic regression analysis was performed 
to ascertain independent determinants of poor CCV. 
In Model 1, we included major parameters in Table  1, 
including gender, age, BMI, hypertension, smoking, 
HbA1c, hypercholesterolemia, eGFR and hsCRP. The 
results showed that less hypertension, smoking, poor gly-
cemic control, low eGFR and high hsCRP levels in Model 
1 (the Rentrop classification), and smoking, poor glyce-
mic control, high Total-to-HDL cholesterol ratio, low 
eGFR and high hsCRP in Model 3 (the Werner classifica-
tion) were independent determinants for poor collaterali-
zation. After adjustment for these variables, serum CML 
levels remained independently associated with poor CCV 
(OR = 1.999, 95% CI 1.530–2.613, P < 0.001 in Model 2 
[the Rentrop classification] (Table  3A), and OR = 1.827, 
95% CI 1.361–2.453, P < 0.001 in Model 4 [the Werner 
classification] (Table  3B). The calibrations of all models 
were good. The addition of CML significantly improved 
predictive performance with an increase of Nagelkerke 
R2 by 12.7% and 9.2% (both P < 0.001). In addition, ROC 
curve for models showed that addition of CML effec-
tively elevated the AUC value (Model 2, AUC = 0.84, 
95% CI 0.78–0.88 P < 0.001 vs. Model 1, AUC = 0.79, 
95% CI 0.73–0.84 P < 0.001) (P = 0.016) (Fig. 3b) (Model 
4, AUC = 0.86, 95% CI 0.81–0.92 P < 0.001 vs. Model 

Table 2  Odds ratio of poor collateralization in diabetic patients

CCV coronary collateral vessel, CI confidence interval, OR odds ratio

*P < 0.05; **P < 0.001
a Multiple-adjustment for gender, age, body mass index, hypertension, smoke, HbA1c, estimated glomerular filtration rate, total-to-HDL cholesterol ratio and serum 
level of high sensitive C reactive protein

Tertiles of CML (n, range ng/ml) Poor CCV, n (%) Crude OR (95% CI) aAdjusted OR (95% CI)

Patients categorized according to the Rentrop classification

Tertile 1 (n = 80, < 38.76) 19 (23.75) 1 1

Tertile 2 (n = 80, 38.76–95.75) 37 (46.25) 2.763 (1.404–5.437) * 2.556 (1.161–5.624) *

Tertile 3 (n = 82, > 95.75) 51 (62.20) 5.282 (2.672–10.441) ** 6.802 (2.980–15.526)**

Per tertile – 2.278 (1.626–3.192)** 2.610 (1.729–3.941)**

P value for tertile trend  < 0.001  < 0.001  < 0.001

Patients categorized according to the Werner classification

Tertile 1 (n = 80, < 38.76) 53 (66.25) 1 1

Tertile 2 (n = 80, 38.76–95.75) 62 (77.50) 1.755 (0.871–3.534) 1.206 (0.529–2.748)

Tertile 3 (n = 82, > 95.75) 78 (95.12) 9.934 (3.285–30.038)** 9.701 (2.898–32.472)**

Per tertile / 2.683 (1.719–4.189) ** 2.510 (1.534–4.106) **

P value for tertile trend  < 0.001  < 0.001  < 0.001
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3, AUC = 0.82, 95% CI 0.76–0.87 P < 0.001) (P = 0.006) 
(Fig. 3c).

Discussion
Patients with diabetes often exhibit poor coronary col-
lateralization after ischemia [1]. Our study has demon-
strated that serum CML levels are significantly increased 
in T2DM CTO patients with poor CCV as compared 
with those with good CCV. Serum CML levels are 
inversely correlated with the Rentrop and Werner score 
in these patients. In logistic regression analysis, serum 
CML level is an independent determinant of poor CCV 
in patients with T2DM and CTO. Our study supported 
the notion that increased CML levels contribute to poor 
coronary collateralization in T2DM patients with CTO.

Hyperglycemia-associated formation of AGEs and sub-
sequent engagement of AGEs with RAGE causes aug-
mented oxidative stress and robust inflammation, leading 
to diabetic cardiovascular complications (macrovascular 
and microvascular vasculopathies), and robust produc-
tion of AGEs, which in return results in a vicious cycle 
[3–6].

Among various AGEs, CML modifications predomi-
nate in  vivo in diabetes [8]. Previous studies have evi-
denced the impact of CML in the pathogenesis of 
cardiovascular diseases associated with diabetes. Spe-
cific AGEs including CML are associated with incident 
cardiovascular events with T2DM [24, 25]. Glycation 
and CML levels in skin collagen predict future 10-year 
progression of diabetic retinopathy and nephropathy in 
controls and in intervention and complication patients 
of type 1 diabetes [26]. Serum levels of AGEs (mainly 
CML) are associated with impaired renal function and 
pathogenic mechanisms of chronic kidney disease [27, 
28]. Circulating Levels of CML are closely related to cen-
tral obesity and inflammation [29], carotid diameter [30], 
and differentiate early to moderate Alzheimer’s disease 
[31]. Moreover, plasma AGEs, in particular CML levels, 
are found to be related to the severity and prognosis of 
CHF [32]. Consistent with above-mentioned studies, our 
study has showed that high CML levels are associated 
with poor collateralization in type 2 diabetic patients 
with CTO. Our findings have further added novel infor-
mation regarding CML, indicating that CML aggravates 
the pathogenesis coronary vasculopathies and meanwhile 

Fig. 3  ROC curves for detecting poor collateralization. a ROC of 
CML for determining poor collaterals categorized by the Rentrop 
score and the Werner score; b ROC of Model 1 and Model 2; c ROC of 
Model 3 and Model 4

◂
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Table 3  (A) Logistic regression analyses to determine risk factors for poor collateralization according to the Rentrop classification 
in diabetic patients; (B) logistic regression analyses to determine risk factors for poor collateralization according to the Werner 
classification in diabetic patients

Model 1 and 3, adjusted for conventional cardiovascular factors; Model 2 and 4, adjusted for the factors included in Model 1 and 3 with the addition of CML; P values 
were in bold if P < 0.05

BMI body mass index, HbA1c glycosylated hemoglobin A1c, HDL high-density lipoprotein, eGFR estimated glomerular filtration rate, hsCRP high sensitive C reactive 
protein

Variables OR (95% CI) P value

(A)

Model 1 Male 0.816 (0.375–1.777) 0.609

Nagelkerke R2 = 0.303 Age per 10 years 1.099 (0.816–1.478) 0.535

Hosmer–Lemeshow test: BMI 1.070 (0.976–1.174) 0.149

P = 0.651 Hypertension 0.422 (0.217–0.821) 0.011
Smoking 2.249 (1.189–4.255) 0.013
HbA1c 1.324 (1.084–1.619) 0.006
Hypercholesterolemia 1.527 (0.603–3.865) 0.372

Total-to-HDL cholesterol ratio 0.888 (0.696–1.134) 0.343

eGFR 0.967 (0.951–0.983)  < 0.001
Log hsCRP 1.134 (1.003–1.282) 0.045

Model 2 Male 0.742 (0.310–1.775) 0.503

Nagelkerke R2 = 0.430 Age per 10 years 1.124 (0.821–1.539) 0.465

Hosmer–Lemeshow test: BMI 1.058 (0.959–1.167) 0.261

P = 0.981 Hypertension 0.323 (0.154–0.677) 0.003
Smoking 1.910 (0.973–3.750) 0.06

HbA1c 1.309 (1.057–1.620) 0.014
Hypercholesterolemia 1.276 (0.494–3.296) 0.615

Total-to-HDL cholesterol ratio 0.864 (0.658–1.135) 0.294

eGFR 0.964 (0.947–0.981)  < 0.001
Log hsCRP 1.182 (1.032–1.355) 0.016
Log2 CML 1.999 (1.530–2.613)  < 0.001

(B)

Model 3 Male 0.874 (0.291–2.628) 0.810

Nagelkerke R2 = 0.306 Age per 10 years 0.919 (0.620–1.363) 0.675

Hosmer–Lemeshow test: BMI 0.977 (0.872–1.095) 0.693

P = 0.911 Hypertension 0.442 (0.181–1.082) 0.074

Smoking 4.514 (1.707–11.935) 0.002
HbA1c 1.351 (1.027–1.778) 0.032
Hypercholesterolemia 0.851 (0.223–3.241) 0.813

Total-to-HDL cholesterol ratio 1.489 (1.056–2.098) 0.023
eGFR 0.970 (0.948–0.993) 0.012
Log hsCRP 1.248 (1.047–1.487) 0.013

Model 4 Male 0.662 (0.209–2.091) 0.482

Nagelkerke R2 = 0.398 Age per 10 years 0.910 (0.599–1.383) 0.659

Hosmer–Lemeshow test: BMI 0.955 (0.845–1.080) 0.465

P = 0.456 Hypertension 0.379 (0.146–0.984) 0.046
Smoking 3.736 (1.375–10.150) 0.010
HbA1c 1.293 (0.983–1.702) 0.067

Hypercholesterolemia 0.587 (0.144–2.391) 0.457

Total-to-HDL cholesterol ratio 1.538 (1.052–2.249) 0.026
eGFR 0.973 (0.950–0.996) 0.021
Log hsCRP 1.290 (1.076–1.547) 0.006
Log2 CML 1.827 (1.361–2.453)  < 0.001
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impairs the repairing mechanisms of CCV formation in 
ischemic tissues. It is also worthy of noting that collateral 
vessels can be found even in nonviable myocardium. Our 
future study may further investigate the potential correla-
tion between the CML levels and the actual presence of 
myocardial viability.

In our study, hypertension was an antagonistic factor of 
poor CCV. It is interesting to mention that a dozen previ-
ous studies have probed the relationship between hyper-
tension and CCV formation in myocardial ischemia, with 
inconsistent results. For instance, a meta-analysis showed 
that among 18 studies about post-ischemia CCV, 7 stud-
ies associated hypertension with better CCV formation, 
and 9 studies were opposite [33]. We believe that this 
phenomenon could be explained as that moderate eleva-
tion of blood pressure may increase the pressure gradient 
in coronary collateral vessels, facilitating collateral ves-
sels development.

Sufficient evidence has revealed that reduction of 
AGEs levels may be effective to alleviate diabetic vascu-
lopathies [34]. Alagebrium, capable of breaking cross-
link structure in AGEs, targets the miR-27b/TSP-1 
signaling pathway to attenuate CML-induced endothe-
lial dysfunction [35]. Soluble RAGE (sRAGE) is a RAGE 
isoform generated through alternative splicing or shed-
ding from cell membrane. sRAGE combines with AGEs 
to prevent the engagement of AGEs with RAGE and 
subsequent activation of RAGE pathway [34]. Ani-
mal studies have shown that administration of sRAGE 
remarkably stabilizes atherosclerotic plaque, and inhib-
its inflammatory factors such as cyclooxygenase-2 
(COX-2), VCAM-1, and monocyte chemoattractant 
protein-1 (MCP-1), thereby attenuating atherosclerosis 
progression [36–38]. Moreover, antioxidants (e.g., vita-
min C, vitamin E), ACEIs, ARBs and statins are capa-
ble of inhibiting AGEs formation [32]. These data jointly 
suggest that inhibition of renin-angiotensin system, 
modulation of dyslipidemia, AGE inhibition, RAGE 
pathway inhibition and oxidative stress reduction are 
therapeutic strategies for preventing cardiovascular 
complications in diabetes, partially through antago-
nizing AGEs formation. Future studies may investigate 
whether inhibition of CML affects coronary collaterali-
zation after myocardial ischemia.

Limitations
We recognize limitations in our study. First, this study 
is a cross-sectional study, these relationships are corre-
lational and not necessarily causal due to the non-rand-
omized nature of the study, and all the enrolled patients 
were from a single center. Second, the Rentrop and Wer-
ner classifications are not most precise ways for evalua-
tion of coronary collateralization. It is more accurate by 

calculating collateral flow index, which requires meas-
urement of pressure within aorta and the distal cul-
prit segment at the same time. Last, CMLs have been 
traditionally quantified by gas chromatography/mass 
spectrometry (GC/MS). What’s more, the risk for con-
founding bias is present in the process of statistical anal-
ysis. Thereby, the correlation between CML and poor 
collateralization needs further support by prospective 
studies.

Conclusion
In conclusion, our results suggest that higher CML 
is associated with poor collateralization in T2DM 
patients with CTO.
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