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Abstract 

Background: The non-invasive quantitative evaluation of left ventricle (LV) function plays a critical role in clinical car-
diology. This study proposes a novel ultrasonic biomechanics method by integrating both LV vortex and wall motion 
to fully assess and understand the LV structure and function. The purpose of this study was to validate the ultrasonic 
biomechanics method as a quantifiable approach to evaluate LV function.

Methods: Firstly, B-mode ultrasound images were acquired and processed, which were utilized to implement param-
eters for quantifying the LV vortex and wall motion respectively. Next, the parameters were compared in polyvinyl 
alcohol cryogen (PVA) phantoms with different degree of stiffness corresponding to different freezing and thawing 
cycles in vitro. Finally, the parameters were computed in vivo during one cardiac cycle to assess the LV function in 
normal and abnormal subjects in vivo.

Results: In vitro study, the velocity field of PVA phantom differed with stiffness (varied elasticity modulus). The peak 
of strain for wall motion decreases with the increase of elasticity modulus, and periodically changed values. Statisti-
cal analysis for parameters of vortex dynamics (energy dissipation index, DI; kinetic energy fluctuations, KEF; relative 
strength, RS; and vorticity, W) based on different elasticity (E) of phantom depicted the good viability of this algo-
rithm. In vivo study, the results confirmed that subjects with LV dysfunction had lower vorticity and strain (S) com-
pared to the normal group.

Conclusion: Ultrasonic biomechanics method can obtain the vortex and wall motion of left ventricle. The method 
may have potential clinical value in evaluation of LV dysfunction.
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Background
There is an increasing risk of sudden death from cardiac 
diseases among survivors of acute myocardial infarction 
with reduced left ventricular (LV) systolic function [1]. 
Quantification of LV function is important for prognosis 

evaluation and clinical description of clinical character-
istics of patients with multiple forms of cardiac disease 
[2]. The non-invasive cardiovascular imaging technolo-
gies are becoming the focus of interest in the field. It is 
advantageous to evaluate LV function accurately in order 
to understand the mechanical abnormity that may lead to 
LV dysfunction.

During early diastolic filling, the transmitral blood flow 
is directed towards the left ventricle, which leads to forma-
tion of a vortex. Vorticity (W) is an essential parameter of 
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the fluid structure, defined as the curl of velocity field, which 
can be calculated by the gradient component of velocity in 
different directions [3]. The presence of vorticities have been 
recognized by the flow-based visualization techniques both 
in vitro models [3] and in vivo experiments [3–5] of human 
left ventricle, or by color Doppler mapping [6] and magnetic 
resonance velocity mapping [7]. In a healthy left ventricle, 
the intraventricular flow pattern has a natural structure to 
minimize the energy dissipation, so that the occurrence of 
abnormal vorticities may alter the momentum transfer in 
blood flow and increase energy consumption during ejec-
tion [8, 9]. In other words, any disorder in such a natural 
arrangement can cause LV dysfunction based on underly-
ing fluid dynamics. The vortical flow is thus potentially a 
novel indicator of LV dysfunction that has not been adopted 
in previous studies. Much research work has already been 
conducted to evaluate and predict the overall cardiac health 
status based on quantitative parameters describing LV func-
tion. These parameters are vorticity (W), wall shear stress 
(WSS), relative strength (RS), energy dissipation index 
(DI), kinetic energy fluctuation (KEF), and vortex fluctua-
tion. They are considered as critical indicators for detecting 
and monitoring abnormities of vortex dynamics with high 
implications on patient’s LV dysfunction [3].

However, vortex dynamics seeded by particles [10] pri-
marily focused on the behavior of LV blood flow. In fact, 
it is indicated that the changes in either LV morphol-
ogy or LV contractile ability may alter intraventricular 
fluid flow pattern and form vortex ring [11]. Previously, 
numerous attempt was proposed to define LV myocardial 
function by quantitatively assessing regional myocardial 
deformation in normal and abnormal segments [12], 
allowing for noninvasive estimation of the indicators for 
regional LV wall motion [13].

Simultaneously, strain (S) and strain rate (SR), directly 
reflect regional myocardial deformation with novel 
indexes that are building blocks in assessing LV wall per-
formance [14–16]. Here, S is a dimensionless quantity and 
describes the deformation produced by stress; it repre-
sents the percentage change in size compared to original 
length. The SR is also equivalent to the rate of deformation 
that can be calculated by spatial velocity gradient. Sev-
eral investigations have demonstrated the feasibility of S 
and SR imaging to quantitatively characterize myocardial 
function [14, 17]. There are several studies which discuss 
about the measurement of S and SR by tissue Doppler 
imaging (DTI) techniques, but suffering from the limita-
tion of angle dependence either in vitro or in vivo [18, 19]. 
The recent research works have proposed novel frame-by-
frame techniques, to track speckles in two-dimensional 
echocardiography gray-scale images, for overcoming 
the angel dependence of tissue Doppler imaging [20, 21]. 
Speckle tracking is a method that is suitable for measuring 

the myocardial motion with speckle tracking patterns in 
ultrasound B-mode acquisitions [22].

From all the aforementioned works, it is observed that 
the S and SR are playing an important role in assessing 
and evaluating the myocardial function. However, few 
studies attempt to take the vortex dynamics and the myo-
cardial motion of left ventricle into account for integrated 
assessment of LV function. This study proposes a novel 
ultrasonic biomechanics method by integrating both 
LV functions (the vortex dynamics and the myocardial 
motion of left ventricle) to fully assess and understand 
the mechanisms in LV structure and function. Com-
pared with conventional processes, We improved the 
resolution, accuracy, and operation rate in our method by 
employing numerical techniques including: cross-corre-
lation calculation, Gaussian multimodal fitting, pseudo-
vectoring and zero-vector processing, Taylor expansion 
and multiple iterations in window deformation, and the 
simplification of the diagnostic window matrix. This 
method serves as a useful application to analyze the vor-
tex and regional wall motion of LV. It will guide individu-
als to obtain two-dimensional LV indices and to assess LV 
function precisely. The purpose of the present study is to 
validate the ultrasonic biomechanics method as a quanti-
fiable approach to evaluate LV function.

Methods
Ultrasonic biomechanics method
In this study, we propose a novel method for analyzing 
and evaluating the ventricular vortex and wall motion 
from B-mode echocardiograms. B-mode ultrasound 
images were obtained and then analyzed with Matlab 
software, using the cross-correlation calculation that has 
been described and validated by Niu et  al. [24] in our 
team. The pairs of successive digital images were obtained 
to compute the magnitude and direction of flow. This 
technique focused on the relevant regions of the ven-
tricle, so the velocity vector was extracted inside a user-
defined region of interest (ROI) in sequential frames, 
with boundary conditions considered. The entire cavity 
of LV was selected as the ROI for analyzing the vortical 
flow dynamics, and different segments of the wall were 
selected as ROIs for corresponding wall motion study. 
Every ROI was divided into a regular grid, which com-
prises interrogation windows. We were evaluating the 
displacement of ROI in successive frames with maximum 
cross correlation coefficient between the original and 
substituted ROIs. An interrogation window of 52 × 52 
pixels with 50% overlap was used for the calculation.

Figure 1 illustrates the schematic of our ultrasonic bio-
mechanics algorithm. At the initial stage, the two-dimen-
sional cross-correlation algorithm is used to compute the 
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displacement of each interrogation window. Then, the 
proposed method integrates several iterative algorithms 
that are suitable candidates for calculating high-velocity 
gradient flows in the presence of velocity vector, the gra-
dient of displacement, and the estimation of geometrical 
transformations of LV wall by strain rate, and the gradi-
ent of velocity. Finally, the size of interrogation window is 
reduced from squares of 52 × 52 pixels to 26 × 26 pixels, 
and the cross-correlation algorithm is applied with the 
reduced interrogation window to acquire higher spatial 
resolution. Similarly, spurious vector elimination algo-
rithm is adopted to acquire exact evaluation of the dis-
placements through the median filter.

Parameter definition
Once the velocity field was acquired, the computed 
results were then rearranged in terms of LV fluid dynam-
ics and wall motion parameters such as vorticity (which 
was a principal quantity to accordingly describe intra-
ventricular blood flow patterns) and strain that gives a 
description of ventricular myocardial deformation. Gen-
erally, the parameters were measured by calculating the 
mean value in each interrogation window.

Mathematically as presented by [24], vorticity ω(i,j,t) is 
defined by the curl of velocity field

where the units are as follows: x (m), y (m), vx (m/s), and 
vy (m/s).

Then, based on [3], the total vortex vorticity is com-
puted as:

The relative strength (RS) of pulsatile contribution with 
respect to the time-average flow is a measure of flow 
“vitality”, a global measure generated by [9]:

where ω0(x,y) and ω1(x,y) represent the vorticity strength 
of the first and zeroth order Fourier harmonic, respec-
tively. The first order is the main pulsatile contribution, 
while the zeroth order is the steady contribution.

In general terms, strain represents relative deformation 
and strain rate represents the rate of deformation. There-
fore, they can be defined as:

where the length (L) is the instantaneous maximum 
width of the left ventricle, while L0 is the original length, 
and ∆L is the difference in length.

And where v2 − v1means the change in instantaneous 
myocardial v1 and v2 at two points, distance d means 
change in velocity points at specific time.

(1)

ω(i, j, t) =
vy(i + 1, j)− vy(i − 1, j)

x(i + 1, j)− x(i − 1, j)

−
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Fig. 1 Flowchart of our ultrasonic biomechanics algorithm for left 
ventricular diagnostics
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In vitro experimental model
To accomplish this study, a LV pulsed flow simula-
tor system was established. It comprised a LV phantom 
container with different stiffness, made from polyvinyl 
alcohol cryogen (PVA). PVA phantoms were made by 
two metal molds of different diameters, as shown in 
Fig. 2. In order to form a periodic, pulsatile flow of cir-
culatory system, the pulsatile pump (Model 55-3305, 
Holliston, MA, USA) was set at a heart rate of 52 beats 
 min−1, and the pump provided a waveform that simu-
lates the realistic ventricular behavior. The waveform 
reproduced an output phase ratio of systole and diastole 
of 35/65. A 10 MHz linear array transducer (L14-5W/60) 
was connected to the Sonix RP ultrasound system (Ultra-
sonix Medical Corporation, Richmond, BC, Canada) lat-
erally, scanning the left ventricular PVA phantom. Pairs 
of B-mode images, separated by a short time interval, 
were obtained with a frame rate of 97 Hz, and about 112 
frames in one cycle. We captured images of the simulated 
blood flow by injecting ultrasound contrast microbub-
bles (UCAs) into the system and seeding them, which are 
supposed to faithfully follow the dynamics of fluid flow, 
into upstream chamber that are necessary for measure 
of displacement and related properties in fluids. To track 

the wall motion, scatters were mixed in the PVA when 
phantom was made. All the above mentioned presents 
the investigated working conditions for phantom experi-
ments, as shown in Fig. 3.

In vivo LV ultrasound image acquisition
This study was performed using a number of subjects 
including four patients with LV dysfunction (3 males, 
1 females, averaged age 64.2 ± 5.5  years old, LV ejec-
tion fraction 56.0 ± 4.0%, all with coronary heart dis-
ease) and five healthy volunteers (3 males, 2 females, 
averaged age 40.0 ± 5.9 years old, LV ejection fraction 
68.4 ± 2.1%). This study was approved by the Ethi-
cal Committee of the Third Affiliated Hospital of Sun 
Yat-sen University with waiver of informed consent. 
In this study, 1 MHz transducer was used to image all 
volunteers and patients at a frame rate of 30 to 60 Hz. 
Flow dynamics and myocardial contours were manu-
ally traced in different levels of view, and the echocar-
diography with contrast agent imaging was performed 
on volunteers to calculate LV blood flow dynamics in 
the apical 4-chamber views during one cardiac cycle. 
B-mode images were recorded from the left ventricu-
lar short-axis view (papillary muscle level) over three 

Fig. 2 Photorealistic images of a, c metal molds with different sizes and b, d their respective left ventricular phantoms
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cardiac cycles to estimate LV myocardial motion. Note 
that the resolution in the direction that is perpendic-
ular to the propagation direction of ultrasound beam 
tends to be low, so the direction of LV long axial ought 
to be parallel to the ultrasound beam for accurate 
strain measurements. All these echocardiography were 
stored in format of cine loop for succeeding offline 
proceeding and analysis. Images were processed using 
our proposed biomechanics algorithm as mentioned 
above.

Statistical analysis
All statistical analyses were performed using the Sta-
tistical Package for Social Sciences statistical software 
package, version 17.0 (SPSS Inc., Chicago, IL, USA). A 
p value less than 0.05 was accepted as indicating sta-
tistical significance. Parametric data were expressed as 
mean ± standard. The analysis of covariance (ANOVA) 
was used to examine the difference of four parameters 
of vortex dynamics (DI, KEF, RS, and W) based on dif-
ferent elasticity of phantom. The t test of independent 
samples was used to compare the vorticity and wall 
shear stress between the normal and patient subjects.

Results
In vitro LV results
The velocity field of PVA phantom with different stiff-
ness, which corresponds to the distinct elasticity modu-
lus, was obtained by our biomechanics algorithm [25] as 
shown in Fig. 4 (top row). The purple arrows indicate the 
velocity vector, and the overall arrangement displays the 
diastolic vortex flow velocity pattern. The relevant spatial 
distributions of vorticity were computed at frame with 
vortex pattern as depicted in Fig. 4 (bottom row). There 
were significant differences between the vorticities of 
different phantoms, and the consequences exhibit a dis-
tinct increase in vorticity with increasing elastic modu-
lus. Vorticity versus elasticity modulus shows a positive 
correlation.

For the evaluation of strain of wall motion, displace-
ments were calculated along the axial direction that are 
parallel to the direction of propagation of ultrasound 
beam, as represented by our algorithm. The calculation 
results of the tracking wall segments in studies is shown 
in Fig. 5. Apparently, the peak of strain for wall motion 
decreased with the increase in elasticity modulus and 
periodically changed values. The statistical analysis for 
four parameters of vortex dynamic (DI, KEF, RS and W), 

Pulsating pump

Transducer

Ultrasound
System

Ventricular 
phantom

Anechoic material

Bubbles injection

Silicone tube

Flow direction

Fig. 3 Experimental set-up used to measure the flow vortex and wall motion pattern of PVA
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at different phantom Elasticity (E) is shown in Table  1. 
These results depict the good viability and performance 
of the proposed algorithm in evaluation of LV function 
and pave a way to further studies in vivo.

In vivo LV results
The same ultrasonic biomechanics algorithm is imple-
mented to process the images captured from human left 
ventricle. The average and maximum values of W and 
WSS of patients with LV dysfunction were larger than 
that of the control group, though the differences were 
not statistically significant (Table 2). Figure 6 reveals the 

Fig. 4 The vortex pattern of different elasticity modulus given by 169.79 kPa (a), 252.34 kPa (b), and 304.42 kPa (c); with their respective distribution 
of vortex of different elasticity modulus(d–f)

Fig. 5 The measured wall displacement of LV phantom with different elasticity modulus given by 169.79 kPa, 252.34 kPa, and 304.42 kPa

Table 1 Statistical analysis for four parameters of vortex 
dynamics (DI, EF, RS, and W) based on different elasticity (E) of 
phantom

Data are mean ± standard deviation

E (kPa) DI KEF RS W

169.79 0.701 ± 0.422 0.001 ± 0.000 0.412 ± 0.007 0.738 ± 0.030

252.34 0.754 ± 0.238 0.001 ± 0.000 0.424 ± 0.032 0.744 ± 0.013

304.42 0.818 ± 0.745 0.002 ± 0.000 0.635 ± 0.076 0.816 ± 0.079

F 3.935 45.500 20.724 2.325

p 0.081  < 0.001 0.002 0.179
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flow pattern in human left ventricle, and a vortex struc-
ture. Moreover, it is observed that intraventricular flow 
patterns are distinctively discriminated in patients with 
LV dysfunction from normal subjects. We observed that 
the vortex pattern of a healthy volunteer was more pro-
nounced in comparison to a patient with LV dysfunction, 
with values of 0.8  ms−1 versus 0.1  ms−1, which correlates 
to the strong versus weak elasticity of their left ventricle.

To further optimize the detection of LV myocardial 
motion, it is recommended to capture the images when 

the ultrasound beam is parallel to the interventricular 
septum. As a result, the longitudinal strain equates to 
the axial component strain in the ultrasound coordi-
nate system, as illustrated in Fig.  7. We note that the 
strain of a healthy elastic ventricle ranges from − 1.8 
to 2.1  mm with an average of 1.2  mm, whereas that 
of a patient with LV dysfunction ranges from − 0.9 to 
0.95 mm with an average of 0.9 mm, showing a 0.3 mm 
difference in the strain averages.

Table 2 Statistical analysis for W and WSS between normal and patients with LV dysfunction

Data are mean ± standard deviation

Average of W Maximum of W Average of WSS Maximum of WSS

Normal (n = 5) 0.0870 ± 0.0145 0.3838 ± 0.1235 2.5337 ± 0.6863 6.1808 ± 1.6832

Patients (n = 4) 0.3217 ± 0.5215 0.9861 ± 1.7595 10.9111 ± 5.7678 26.1429 ± 16.0799

t − 0.900 − 0.683 − 2.889 − 2.472

p 0.434 0.543 0.061 0.088

Fig. 6 Vortex pattern of healthy volunteer (a) and patient with LV dysfunction (b) and vortices distribution (under)
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Discussion
This study proposed a novel ultrasonic biomechanics 
method to simultaneously measure LV vortex and ven-
tricular wall motion to assess LV function, which exhibits 
potential clinical value. For potential validation and suit-
ability of real echocardiogram, the proposed algorithm 
was first tested in a phantom experimental set-up as a 
mean to access LV function. The measurement of these 
function parameters can contribute to characterizing LV 
related performance in normal subjects versus patients 
with LV dysfunction.

Previous studies focused merely on investigations 
to evaluate LV behavior from the aspect of either fluid 
dynamics or myocardial in left ventricle [26, 27]. In this 
study, we carried out ultrasonic imaging of the blood flow 
and elastic wall motion of left ventricular in both phan-
tom and human study, and then combined the obtained 
vortex and wall motion of LV for dysfunction analysis. 
After collecting images, velocity vector or displacement 
vector for particle imaging velocimetry of blood flow and 
elastic wall imaging were estimated through cross-corre-
lation algorithm, respectively [28–30]. Aided with sub-
pixel method, median filtering of pseudo vector, linear 
interpolation and multiple iterative algorithms, the accu-
racy of the algorithm can be further improved.

In vitro study, the calculated velocity vector distribu-
tion could show the vorticity and wall shear force distri-
bution at the moment of the vortex. The peak occurred at 
the central position of the vortex, and the peak showed 
a significant trend of increasing, which corresponded 
to the different elasticity modulus. The peak of strain 
for wall motion decreased with the increase in elastic-
ity modulus and periodically changed values. Statistical 
analysis for parameters of vortex dynamics at various E of 
phantom depicted good viability of this algorithm.

In vivo study, the results confirmed that subjects with 
LV dysfunction had lower vorticity and S compared to 

the normal group. The peak of the vorticity and wall 
shear force occurred at the central position of the vor-
tex in both groups, and the data in the patients with LV 
dysfunction showed larger values. The measured wall 
displacement of healthy volunteer was larger than that 
of patients with LV dysfunction. Also the W and WSS 
of patients with LV dysfunction were larger than that of 
the normal individuals, yet the difference was not sta-
tistically significant.

The potential for quantifying left ventricular func-
tion by eddy dynamics and wall motion was investi-
gated in vitro. The current results show that eddy flow 
dynamics and wall motion characteristics are greatly 
affected by elasticity, and can be utilized as quantitative 
parameters in future analysis. It is verified that the two 
parameters are greatly affected by chamber elasticity, so 
as to quantify the difference of left ventricular eddy cur-
rent and wall motion between the left ventricular dys-
function and control group. From the current results, 
we may speculate that the left ventricular dysfunction 
will be directly manifested in these two characteristic 
parameters, which tell noticeable discrepancies, and 
provide a reference tool for the diagnosis, prognosis 
and treatment of left ventricular dysfunction.

There were several limitations of this study: (1) Com-
pared to the perpendicular-to-axial direction,  this 
method is more accurate in axial direction to calcu-
late wall motion, parallel to the direction of ultrasonic 
beam. The reason might be the low resolution of the 
ultrasonic probe in this direction. (2) Given the small 
number of vivo cases, our findings must be regarded as 
preliminary. Future research with larger sample sizes 
are needed to verify these results.

Conclusion
This work proposes a novel algorithm to examine LV 
function from echocardiogram that is adapted to both 
vortex dynamics and wall motion. In  vitro phantom 
study demonstrated the potential of our new method 
to detect abnormal vortex and wall motion. The cur-
rent data in  vivo have shown the difference in param-
eters of both vortex dynamics and wall motion between 
normal subjects and patients with LV dysfunction. The 
deviation in vorticity and strain is correlated with LV’s 
mechanical performance and this method may have 
potential clinical value in evaluation of LV dysfunction.

Abbreviations
LV: Left ventricle; PVA: Polyvinyl alcohol cryogen; WSS: Wall shear stress; DTI: 
Tissue Doppler imaging; ROI: Region of interest; RS: Relative strength; E: Elastic-
ity; DI: Energy dissipation index; KEF: Kinetic energy fluctuations; RS: Relative 
pulsatile vorticity strength; W: Vorticity; S: Strain.

Fig. 7 Measured wall displacement of healthy volunteer (left) with 
range from − 1.8 to 2.1 mm, and patient with LV dysfunction (right) 
with range from − 0.9 to 0.95 mm
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