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Abstract

Background/Objectives: High fat diet (HFD) is a major contributor to the development of obesity and cardiovascular
diseases due to the induction of cardiac structural and hemodynamic abnormalities. We used a model of diabetic
cardiomyopathy in C57BI/6 mice fed with a HFD to investigate the effects of granulocyte-colony stimulating
factor (G-CSF), a cytokine known for its beneficial effects in the heart, on cardiac anatomical and functional
abnormalities associated with obesity and type 2 diabetes.

Methods: Groups of C57BI/6 mice were fed with standard diet (n =8) or HFD (n = 16). After 36 weeks, HFD animals
were divided into a group treated with G-CSF + standard diet (n=8) and a vehicle control group + standard diet
(n=38). Cardiac structure and function were assessed by electrocardiography, echocardiography and treadmill tests, in
addition to the evaluation of body weight, fasting glicemia, insulin and glucose tolerance at different time points.
Histological analyses were performed in the heart tissue.

Results: HFD consumption induced metabolic alterations characteristic of type 2 diabetes and obesity, as well as cardiac
fibrosis and reduced exercise capacity. Upon returning to a standard diet, obese mice body weight returned to
non-obese levels. G-CSF administration accelerated the reduction in of body weight in obese mice. Additionally,
G-CSF treatment reduced insulin levels, diminished heart fibrosis, increased exercise capacity and reversed cardiac
alterations, including bradycardia, elevated QRS amplitude, augmented P amplitude, increased septal wall thickness, left
ventricular posterior thickening and cardiac output reduction.

Conclusion: Our results indicate that G-CSF administration caused beneficial effects on obesity-associated cardiac
impairment.
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Background

Diabetes is one of the most prevalent disorders and
recent estimations suggest that there is a worldwide
population of 347 million diabetic individuals [1]. Ac-
cording to WHO, diabetes will be the 7th leading cause
of death in 2030 [2]. As the investigation of diabetes in-
tensifies, it has become more evident that there exists a
strong correlation between diabetes, obesity, high fat diet
(HFD), sedentarism and cardiac abnormalities. With
regards to diabetes-associated mortality and morbidity,
the major culprit is alterations in cardiac structure and
function. In this context, coronary arterial disease pre-
sents a higher incidence among heart alterations due to
the diabetic condition that leads to heart failure. Diabetic
cardiomyopathy is another cardiac disturbance which
can be found independent of any trace of hypertension
or ischemia [3], and represents an increased risk of heart
failure in type 2 diabetes (DM2) patients. This disease
was first described in four diabetic patients that died
from heart failure, independent of an ischemic event or
hypertension [4].

Excess fat consumption increases the risk of obesity
and DM2, which can be followed by heart disease. The
greater supply of fatty acid available increases its metab-
olism and oxidation, simultaneously reducing glucose
uptake and oxidation, which represents more oxygen
consumption by the heart without improving cardiac ef-
ficiency due to mitochondrial dysfunction [5-7]. DM2
and obesity are linked by different factors, such as pro-
duction of pro-inflammatory cytokines and insulin re-
sistance (IR) [8]. The inflammatory component of DM2
had also been demonstrated in experimental diabetes
[9]. Several studies have suggested that the deterioration
of cardiac function may be influenced by alterations in
cytokine production, such as TGF-, TNFa, IL-1B, IL-6
and IL-18 [10, 11], which participate in the formation of
tissue fibrosis and inflammation. The hyperglycemia also
worsens the cardiac function impairment due to an in-
flammatory process in the vascular endothelium, leading
to micro- and macro-vascular complications [12-14].

Beneficial lifestyle changes, including a healthy diet
and regular physical activity, contribute to the preven-
tion of cardiovascular complications observed in obes-
ity and DM2, however these positive life choices have
yet to demonstrate functional cardiac recovery in the
chronic diabetic state [15]. Recently, investigations
have centered on the therapeutic use of granulocyte
colony-stimulating factor (G-CSF), a cytokine known
to promote the mobilization of bone marrow-derived
hematopoietic stem cells into the circulation [16, 17].
G-CSF has shown beneficial effects on myocardial
regeneration, such as the acceleration of wound heal-
ing, prevention of myocardial apoptosis and reduced
myocardial fibrosis [18-21]. In addition, our laboratory
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has demonstrated in a mouse model of Chagas disease
cardiomyopathy that treatment with G-CSF results in
reduced fibrosis and inflammation in the heart, while im-
proving electrocardiography (EKG) alterations and exer-
cise capacity [22].

Based on our previous work, we hypothesized that
G-CSF treatment would have beneficial effects in im-
paired cardiac function associated with obesity and
DM2. In this study we investigated the therapeutic ef-
fect of G-CSF in a model of obese-diabetic C57Bl/6
mice generated by feeding with a HFD, which com-
bines genetic susceptibility with environmental factors.

Methods

Experimental animals

Twenty weeks—old male C57Bl/6 mice were raised
and maintained in the animal facilities at the Cell
Therapy and Biotechnology Center of Hospital Sao
Rafael (Salvador, Bahia, Brazil). Mice were housed at
room temperature (20+2 °C), under controlled hu-
midity (50 %), with unrestricted access to food and
water ad libitum and exposed a constant light—dark
cycle of 12 h and 12 h. All procedures were approved
by the Ethical Committee for Animal Research of
CPqGM/FIOCRUZ.

Induction of obesity and administration of G-CSF

C57Bl/6 mice were fed a standard mouse chow for up to
five months of age. Mice were then divided into two
groups: standard diet (Nuvital®, Parand, Brazil) (n=38)
and HFD (Research Diets Inc; New Brunswick, NJ, USA)
(n=16) for 36 weeks to induce obesity. Thirty-six week
exposure to HFD was selected based on a pilot study
(our unpublished data) where we initially standardized
the model of diabetic cardiomyopathy in C57BL/6 mice.
At 36 weeks of HFD induction, significant cardiac ab-
normalities were detected by echocardiogram (ECHO)
and EKG. Table 1 details the composition of the diets
used in this study.

Following 36 weeks of HFD consumption, obese mice
were randomly divided into two sub-groups. The first
group was treated with human recombinant G-CSF
(Filgrastim - Bio Sidus S.A., Buenos Aires, Argentina)
and vehicle (saline). The protocol of G-CSF treatment
consisted of three courses of a daily injection (200 pg/
kg/day in saline, intraperitoneally) for 5 days, including a
7-day interval between each course. The second group
was the treatment control group that received equal vol-
ume of saline solution (100 pl i.p.) following the same in-
jection protocol. When G-CSF and saline administration
begun, obese mice were removed from HFD and replaced
with a standard diet (Fig. 1).
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Table 1 Nutritional composition of high fat (HFD) and standard diets
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HFD (D12330)

Standard diet

gm% kcal% gm% kcal%
Protein 230 164 Protein 16.8 164
Carbohydrate 355 255 Carbohydrate 743 73.1
Fat 358 580 Fat 48 105
Total 100 Total 100
Kcal/gm 5.56 Kcal/gm 4.07
Ingredients gm keal Ingredients gm keal
Casein, 30 Mesh 228 912 Casein, 30 Mesh 228 912
DL-Methionine 2 0 DL-Methionine 2 0
Maltodextrin 10 170 680 Maltodextrin 10 170 680
Corn Starch 175 700 Corn Starch 835 3340
Sucrose 0 0 Sucrose 0 0
Soybean Oil 25 225 Soybean Oil 25 225
Coconut Oil, Hydrogenated 3335 30015 Coconut Oil, Hydrogenated 40 360
Mineral Mix S10001 40 0 Mineral Mix S10001 40 0
Sodium Bicarbonate 105 0 Sodium Bicarbonate 105 0
Potassium Citrate, 1 H20 4 0 Potassium Citrate, 1 H20 4 0
Vitamin Mix V10001 10 40 Vitamin Mix V10001 10 40
Choline Bitartrate 2 0 Choline Bitartrate 2 0
FD&C Blue Dye #1 0.05 0 FD&C Yellow Dye #5 0.1 0
FD&C Red Dye #4 0.05 0
Total 1000.1 55585 1366.6 5557

Diet replacement
for standard diet
High fat diet
(n=16) Treatment
Standard diet S;i?:lin;i)s)
— —
| I I I 1 1 >
0 12 24 36 38 44 52 Weeks

EKG, ECHO, Treadmill, GTT
0, 12, 24, 36 and 52 weeks

ELISA and Biochemical tests
0, 36 and 52 weeks

Morphometric analysis
52 weeks

Body weight and Fasting glicemia
Monthly

Fig. 1 Experimental design. During the first 36 weeks, groups of C57Bl/6 mice were fed with HFD or standard diet. Subsequently, the HFD-fed mice
were divided into two groups, receiving either G-CSF or vehicle (saline), while simultaneously returned to a standard diet. Functional testing
(EKG, ECHO, treadmill) and glucose tolerance test (GTT) were done every 3 months. ELISA and biochemical tests were performed prior to and
at the conclusion of the HFD administration protocol (36 weeks), as well as 8 weeks after the end of G-CSF/saline administration
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Assessment of body weight, glucose, insulin, total
cholesterol and adiponectin

The induction of obesity was monitored by monthly
measurements of body weight and fasting glucose levels,
in addition to a quarterly evaluation of glucose tolerance,
with samples collected from tail vein blood. The fasting
glucose test was performed 7 h following the last food
intake, while the glucose tolerance test was performed
after a 4 h fasting. Tests were performed using an Accu-
Chek Active glucometer system (Roche Diagnostics;
Mannhein, Germany). Measurements of insulin, total
cholesterol and adiponectin were performed prior to and
at the conclusion of HFD administration protocol
(36 weeks), as well as 8 weeks after to the conclusion of
G-CSF administration. Insulin and total cholesterol eval-
uations were performed using a SBA 200 Celm (CELM
Co.; Sdo Paulo, Brazil). Adiponectin was measured in the
plasma of mice by sandwich ELISA using DuoSet ELISA
Development System kit (R&D Systems; Minneapolis,
MN, USA). For these measurements, blood was collected
from the orbital plexus under isoflurane anesthesia.

Cardiac functional analysis

Assessment of cardiac function was performed every quar-
ter. The cardiac function evaluation included: ECHO,
EKG and treadmill test. For ECHO exam and EKG
recordings, animals were anesthetized with inhaled iso-
flurane (0.5 %). Transthoracic echocardiography was
performed on supine positioned mice maintained on
a thermo-regulated plate (37 °C) to acquire images in dif-
ferent acoustic windows by using the Vevo 770 Ecosystem
(Visual Sonics, Toronto, Canada) equipped with a 30 MHz
transducer (Model 707B RMYV, Visual Sonics).

ECHO analysis was performed using M-mode and
B-mode image acquisition tools allowing for the
visualization and measurement of left ventricular wall
motion, anatomical structures, hemodynamics parameters,
thereby enabling the detection of morphological and func-
tional alterations, as described previously [23, 24]. Ven-
tricular wall thickness and the inner diameter of the left
ventricle during systole and diastole were determined from
M-mode and B-mode images by measuring blood flow,
using pulse Doppler hemodynamics. The function parame-
ters evaluated were fractional shortening, ejection fraction,
systolic volume, end-diastolic volume and cardiac output.

EKG acquisition was performed using a bipolar I lead,
obtained from the Bio Amp PowerLab System (PowerLab
2/20; ADInstruments, Castle Hill, Australia), allowing for
the recording of biological signals in animals (under
isoflurane inhaled anesthesia) with complete electrical iso-
lation. All acquired data was analyzed on Windows Chart
5 (PowerLab). Recordings were bandpass-filtered (1 to
100 Hz) to minimize environmental signal disturbances at
a sampling rate of 1 kHz. The EKG analysis included heart
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rate, PR interval, P wave duration, QT interval, corrected
QT Interval (QTc), and arrhythmias. Wave durations (ms)
and heart rate were calculated automatically by the soft-
ware. The QTc was calculated as the ratio of QT interval
by square roots of RR interval (Bazett’s formula) [25].

A single-animal motor-driven treadmill chamber (LE
8700; Panlab, Barcelona, Spain) was used to exercise the
mice. Treadmill speed and shock intensity (mA) were
controlled by a potentiometer (LE 8700 treadmill con-
trol; Panlab). Room air was pumped into the enclosed
compartment at a controlled flow rate (700 ml/min) by a
chamber air supplier (Oxylet LE 400; Panlab). Mean
room temperature was maintained at 21 + 1 °C. After an
adaptation period of 30 min in the treadmill chamber,
mice were exercised at 5 different velocities (7.2, 14.4,
21.6, 28.8 and 36.0 m/min), with increasing velocity after
10 min of exercise at each given speed. Velocity was in-
creased until the animal could no longer sustain a given
speed and remained more than 10s on an electrified
stainless-steel grid, which provided an electrical stimulus
to maintain the mice in motion.

Histopathological analysis

Hearts from control mice (fed with standard diet through-
out the study), G-CSF-treated HF mice and vehicle-
treated HF mice were removed and fixed in buffered 10 %
formalin. Sections of paraffin-embedded tissue were
stained with standard hematoxylin-and-eosin (H&E) and
Sirius red for evaluation of inflammation and fibrosis, re-
spectively, by optical microscopy. Images were digitized
using a color digital video camera (CoolSnap, Montreal,
Canada) adapted to a BX41 microscope (Olympus, Tokyo,
Japan). The images were analyzed using Image Pro 5.0
(Media Cybernetics, San Diego, CA, USA), to integrate
the number of inflammatory cells that were counted by
area. Ten fields per heart were counted from each
mouse/group. The percentage of fibrosis was calculated
according to previously published methods [26]. Heart
sections stained with Sirius red were digitized using a
color digital video camera adapted to a BX41 micro-
scope. Blinded analysis was performed on ten fields
captured per heart, identifying areas of fibrosis and
avoiding blood vessels (200x magnification). The per-
centage of fibrosis was estimated in each field using
Image-Pro Plus software, where the percentage of the
red area was compared with the remaining areas of the
field. Results were presented as integrated area.

Statistical analysis

Data were expressed as mean + standard error of mean
(SEM) for the number of animals in each group.
Student’s ¢ test was used to compare quantitative vari-
ables from the two groups at one point. When two or
more groups were compared, analysis of variance
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(See figure on previous page.)

HFD-G-CSF, #p < 0.05)

Fig. 2 Body weight and biochemical analysis. a Body weight was measured from the beginning (T0) until the completion of HFD (36 weeks),
in 4-week intervals. Following the completion of the HFD-induced DM2, mice returned to standard diet where some animals received G-CSF
or saline treatment until 52 weeks. (Values are expressed as mean + SEM. HFD mice vs. standard diet mice ***p < 0.001; G-CSF-treated mice vs.
standard diet fed mice +p < 0.01; Saline-treated mice vs standard diet fed mice tp < 0.001; Saline-treated mice vs standard diet fed mice t1p < 0.001).
(b) Glycemia was measured from the beginning (T0) until the completion of HFD (36 weeks), in 4-week intervals. Following the completion of the
HFD-induced DM2, mice returned to standard diet where some animals received G-CSF or saline treatment until 52 weeks. (Values are
expressed as mean + SEM. HFD mice vs. standard diet mice, *p < 0.05, **p < 0.01, ***p < 0.001). ¢ Cholesterol was measured before (T0), at the end of
HFD consumption (36 weeks) and following G-CSF/saline administration (52 weeks) (Values are expressed as mean + SEM. HFD mice vs. standard diet
mice, **p < 0.01; G-CSF-treated mice TO vs. T36, TTp < 0.01). d Plasma insulin concentrations were evaluated at 36 and 52 weeks. (Values are expressed
as mean + SEM. G-CSF-treated mice vs. standard diet mice *p < 0.05; Saline-treated mice vs standard diet mice, t1tp <0.001; HFD-Saline vs.

(ANOVA) was applied, with the Newman-Keuls post-test.
Significant difference was reached when p values were less
than 0.05. Statistical analysis was performed with Graph
Pad Prism 5.0 software (San Diego, CA, USA).

Results

G-CSF accelerates body weight recovery and reduces
circulating insulin levels after HFD withdraw

The introduction of HFD caused a significant increase
in body weight compared to standard diet fed mice.
At 36 weeks, HFD was withdrawn and all animals
were fed a standard diet while received G-CSF or sa-
line administrations (Fig. 1). Although the body weight
from both HFD saline and HFD G-CSF groups consuming
standard diet was normalized after 52 weeks, G-CSF treat-
ment accelerated the weight loss (Fig. 2a). HFD resulted in
an elevation in fasting glucose rates from the 8th to the
36th week following induction (Fig. 2b). Fasting glucose
levels were significantly reduced following removal from
HEFD, however G-CSF did not influence this decrease
(Fig. 2b). Similarly, HED fed mice had significantly worse
glucose tolerance test results when compared to standard
diet fed mice (Table 2). Following the removal from HFD
(week 36), no differences were observed in the glucose tol-
erance test at any time point, despite G-CSF administra-
tion (data not shown).

Total cholesterol was significantly elevated in HED fed
mice (at 36 weeks) compared to standard diet fed mice
(Fig. 2¢). Removal from HFD alone normalized cholesterol
to levels to those observed in standard diet fed mice. In
contrast, insulin levels, which were significantly elevated
in HFD mice (36 weeks) did not normalize following

Table 2 Glucose tolerance test

removal from HFD (52 weeks). G-CSF administration
caused a statistically significant reduction in insulin levels
in HED mice, reaching levels observed in control mice
(Fig. 2d). Adiponectin was also measured at 36 and
52 weeks, however no statistical differences were detected
between any of the groups evaluated (data not shown).

G-CSF administration reverses cardiac function alterations
in diabetic mice

The cardiac structural evaluation was performed by
echocardiogram before and 36 weeks after HFD adminis-
tration, as well as following G-CSF/saline administration
at week 52. The parameters evaluated during systole and
diastole were indicative of cardiac hypertrophy develop-
ment in the HFD group, including increased left ventricle
mass (Fig. 3a), posterior wall thickness (Fig. 3b and c¢) and
septal thickness (Fig. 3d and e). Removal of HFD (at week
52) alone did not reverse these alterations, however,
together with G-CSF administration, resulted in values
similar to those observed in mice submitted to standard
diet (Fig. 3a—e). Both systolic and diastolic left ventricle di-
ameters from obese mice were significantly reduced, when
compared to mice fed with standard diet (Fig. 3f and g).
Treatment with G-CSF also reversed this alteration, caus-
ing a statistically significant increase in ventricular diam-
eter during both systole and diastole.

Hemodynamic analyses revealed significant increases
in fractional shortening (Fig. 4a) and ejection fraction
(Fig. 4b) in obese mice after 36 weeks, however G-CSF
administration did not have any additive effects on these
two parameters after the HFD removal. Conversely, the
mobilized volumes, such as systolic volume (Fig. 4c),

Standard  HFD Standard HFD Standard HFD Standard HFD Standard HFD
T0 133+54 144+52 314+£107 318+139 261+160 260+10.0 209+ 142 221+87 162+121 163+76
122w 163+55 189+46 294+240 367+149* 233+£192  304£13.0%*  217£66 303+£1527**  196+£120 264£159*
24w 140+£50 188+74 300£189 463+17.1** 256+186 389+184** 187£96 287 +£187 ** 154+79 208+82*
36w 135+£72 150+36  311£191 413+176** 231+150 339+£21.7** 181+£84 265+ 21.7 ** 142£117 204+114*
0 min 15 min 30 min 60 min 120 min

*p < 0.05, ¥*p < 0.01, **p < 0.001.
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Fig. 3 Echocardiography functional assessment. Echocardiographic analyses were performed before (T0), at the end of HFD consumption (36 weeks), and
at 52 weeks. LV mass (a), posterior wall thickness during systole (b) and diastole (c), interventricular septum thickness during systole (d) and diastole
(e), and LV internal diameter during systole (f) and diastole (g) were evaluated. Values are expressed as mean + SEM. HFD mice vs. standard
diet mice *p < 0.05, **p < 0.01. G-CSF-treated mice vs. saline-treated mice *p < 0.05. HFD-Saline mice vs. standard diet mice, tp < 0.05

end diastolic volume (Fig. 4d) and cardiac output
(Fig. 4e) were significantly reduced in obese mice at the
conclusion of HFD induction. Administration of G-CSF
resulted in a statistically significant increase in both sys-
tolic and end-diastolic volumes, measured at week 52
(Fig. 4c and d). No differences were detected in isovolu-
metric relaxation time, or in isovolumetric contraction
time, at 36 or 52 weeks. Removal of HFD alone normal-
ized fractional shortening (Fig. 4a) and ejection fraction
(Fig. 4b). G-CSF administration increased blood volume
mobilized by the heart, as shown by the elevation of the
end diastolic volume (Fig. 4d) and cardiac output (Fig. 4e).

Thirty six weeks after HFD induction, obese mice heart
rates was significantly reduced compared to control mice
(Fig. 5a), while the PR and RR intervals, QRS amplitude
and P wave were increased (Fig. 5b—e). Moreover, a
significant reduction in running distance was observed in
obese mice when compared to control, following the diet
change at 36 weeks (Fig. 5f). EKG analysis showed a rever-
sion of electrical alterations only after G-CSF administra-
tion, which normalized heart rate (Fig. 5a), PR interval
(Fig. 5b), QRS (Fig. 5d) and P wave (Fig. 5e) amplitudes.
Importantly, the physical exercise capacity was recovered
in G-CSF-treated obese mice, as shown by the run
distance (Fig. 5f).

In the present study, results evidenced LV hypertrophy
in absence of diastolic or systolic alterations. However,
no alterations were observed during the relaxation time
or peak systolic velocity.

Reversion of HFD-induced heart fibrosis in the heart after
G-CSF administration

Obese saline-treated mice had a significantly higher per-
centage of fibrosis in the heart at week 52, when com-
pared to control mice (Fig. 6). G-CSF administration in
obese mice caused a statistically significant reduction in
fibrosis, when compared to saline-treated obese mice
(Fig. 6), reaching levels similar to those of mice fed with
standard diet. Inflammatory cells were not found in
heart sections of any experimental group.

Discussion

In the present study, we demonstrated that G-CSF
administration contributed, at least partially, to the im-
provement of cardiac function in obese diabetic mice
presenting concentric hypertrophy, characteristic of dia-
betic cardiomyopathy. This was reflected in the recovery
of physical exercise capacity and the hypertrophy

reversal measured by echocardiography. Additionally,
we observed that G-CSF administration resulted in a
reversion of fibrosis in the heart tissue, caused by
HFD consumption.

The experimental strategy HFD removal was based on
the American Diabetes Association recommendations that,
at the onset of diabetes diagnosis, lifestyle changes (diet and
exercise) with or without medication are needed to control
blood glucose. Studies have demonstrated that the first step
in treating DM2 is to limit the intake of saturated fatty
acids, trans fatty acid and cholesterol, in order to reduce
the cardiovascular risks [27-29]. Aligned with this recom-
mendation, this study submitted mice to a HFD that re-
sulted in an obese state, followed by returning to a standard
diet accompanied by administration of G-CSF or saline.

DM2 and obesity are related and severely effect a large
worldwide population [30-32]. Both conditions are associ-
ated with the development of hypertension, coronary
disease, cardiomyopathy and micro- or macro-vascular
injuries [33]. Diabetic cardiomyopathy was originally re-
ported in diabetic patients, following heart failure-induced
death while lacking evidence of hypertension, myocardial
ischaemia or congenital or valvular heart disease [4]. Here,
we used a model that presented pathophysiological char-
acteristics of diabetic cardiomyopathy, using C57Bl/6 male
mice fed with a HED. This led to the induction of obesity-
dependent diabetes, as well as myocardial disturbances,
which resemble those found in humans.

Here we confirmed that the C57Bl/6 mouse strain is
highly susceptible to develop DM2 following HFD expos-
ure, also resulting in obesity, hyperglycemia and glucose
intolerance, as previously reported [34—36]. After return-
ing to a standard diet, and independent of G-CSF admin-
istration, glycemia levels were normalized to the levels of
mice only fed with a standard diet. Our data is supported
by previous studies demonstrating healthier dietary habits
can result in positive outcomes for DM2 patients [37, 38].
Although removal from HFD resulted in a significant
reduction in body weight, G-CSF administration caused
an accelerated weight loss when compared to saline ad-
ministration. Finally, G-CSF administration also resulted
in an improved exercise capacity when compared to
saline-treated obese mice.

Hyperinsulinemia is a component of the pathogenesis
in obesity and diabetes. In the current study, saline ad-
ministered obese-diabetic mice presented a significant
level of hyperinsulinemia compared to non-obese-
diabetic mice, even after returning to a standard diet.



Daltro et al. BMC Cardiovascular Disorders (2015) 15:162 Page 9 of 13

[IStandard diet [l High fat diet [] Saline-treated == G-CSF-treated

>
vy

[$)]
o
1
-
o
g

§ *k .

2 40+ & 80 —
£ p

[ .2

T 30 B 60+
[<] ©

2 E

2 20- S 40-
c =

2 10- 8 20
E w

L o o]

T0 36 weeks 52 weeks TO 36 weeks 52 weeks
C D
50+ — 100~ —*
—_ # _=_I *
= 40- g 80-
2 . 5
S 307 — S 60
o Q
; 204 S 404
S 8
2 10- T 20+
= ©
)
0 G o
TO 36 weeks 52 weeks To 36 weeks 52 weeks
\ Tt |
I 1
E : o |
200+ ##
—_
3
< 150+
L
=]
o
5
o 1004
o
8
T 504
S
0
TO 36 weeks 52 weeks
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vs. G-CSF-treated mice TTT/0 < 0071. HFD mice (36 weeks) vs. G-CSF-treated mice 5p < 005. For cardiac output (e), G-CSF-treated mice vs. saline-treated mice
Mp <001, HFD mice (T0) vs. G-CSF-treated mice wp <001, HFD mice (36 weeks) vs. G-CSF-treated mice 6/3 <005

G-CSF administration significantly reduced circulating CSF has been implicated in regulating insulin secre-
concentrations of insulin in obese-diabetic mice. To the  tion. This reduction in insulin concentration induced
best of our knowledge, this is the first time that G- by G-CSF administration may contribute to the
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accelerated weight loss observed in the obese-diabetic
mice [39].

Anti-obesity effects of G-CSF have been demonstrated,
resulting in the reduction of inflammatory cytokines that
led to a loss in body weight in a model of obese-diabetic
rats [40]. The anti-inflammatory effect of G-CSF is well
characterized and has been observed in different disease

models, including chronic Chagas disease cardiomyop-
athy, which has been shown in previous studies from
our group [26]. Based on the effect of G-CSF on insulin
regulation, the reduction of insulin and, potentially, a de-
crease in pro-inflammatory cytokines induced by G-CSF
[41], may lead to a reduction in body weight, however
further studies are needed to clarify this possibility.
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Fig. 6 G-CSF administration reduces HFD-induced heart fibrosis. Heart sections of mice fed with standard diet (a), saline-treated obese mice (b)
and G-CSF-treated obese mice (c). d Morphometric analysis of the percentage of fibrosis area in heart sections. Values are expressed as mean + SEM.
Standard diet mice vs. saline-treated mice **p < 0.01. Saline-treated mice vs. G-CSF-treated mice “p < 0.05. Calibration bars = 50 pm
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The direct actions of G-CSF in modulating negative
cardiac outcomes have been intensely investigated, which
include reducing cardiac fibrosis. In the present study,
we observed that G-CSF administration significantly
reduced fibrosis in the heart tissue. Studies have sug-
gested different mechanisms by which G-CSF reduces
fibrosis, including modulation of synthesis and deg-
radation of components in the extracellular matrix
[42] as well as G-CSF-mediated signaling regulation
of collagenase [43]. Our group has previously demon-
strated the anti-fibrotic effects of G-CSF in the heart
in a model of chronic Chagas disease cardiomyopathy,

which results in progressive collagen deposition and
fibrosis [26]. Therefore our current results in the
obese-diabetic mouse model reinforce the anti-fibrotic
effects of G-CSF.

In this study, the structural and hemodynamic parame-
ters evaluated by ECHO suggested the development of
concentric hypertrophy. The fractional shortening and
ejection fraction were elevated in HFD mice compared to
mice fed a standard diet, which is supported by clinical
evidence of obesity-induced LV hypertrophy [44]. More-
over, the LV diameter was reduced in HFD mice, which
was in accordance with the lowest end diastolic volume
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and systolic volume observed in this group, suggesting a
reduction in LV compliance. The elevated P wave and
QRS amplitudes recorded in EKG reflects the loss of LV
compliancy and hypertrophy. G-CSF administration re-
sulted in the reversal of the hypertophic state of the obese
mouse heart, normalizing LV mass, posterior wall thick-
ness (during both systole and diastole) and intraventricu-
lar septum thickness (during both systole and diastole) to
levels of non-obese standard diet fed mice. One of the fac-
tors that may contribute to the recovery of compliance
following G-CSF administration is the reduction of the
fibrosis. Previous studies have demonstrated that G-CSF
administration has protective effects against cardiac re-
modeling and acts to reduce cardiac hypertrophy [45, 46].
Thus, we suggest that G-CSF acts as a mediator against
cardiac hypertrophy, presenting a promising therapeutic
option for individuals with diabetic cardiomyopathy.

HFD increases apoptotic susceptibility that can lead to
elevated cardiac insult vulnerabilities [47]. Increased
apoptosis leads to hypertrophy [48] and fibrosis deposition
in the myocardium [49] leading to cardiac dysfunction. G-
CSF has anti-apoptotic properties on cardiomyocytes [50],
and demonstrates anti-fibrotic activity [26]. Therefore, G-
CSF can act as a protective mediator, leading to cardiac
preservation and, potentially, reversal of heart damage.

Conclusion

In summary, our results reinforce that G-CSF has a
cardioprotective role, as well as acts as a modulator in
diabetes and obesity. Evaluation of G-CSF during HFD
administration needs to be performed in order to assess
its effects during HED consumption. Further studies are
required in order to understand the molecular mecha-
nisms involved in the protective actions of G-CSF.
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