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Abstract

sarcomeric protein titin.

mechanics.

Background: Iron may damage sarcomeric proteins through oxidative stress. We explored the left ventricular (LV)
torsional mechanics in patients with beta-thalassaemia major and its relationship to myocardial iron load. Using
HL-1 cell and B6D2F1 mouse models, we further determined the impact of iron load on proteolysis of the giant

Methods and results: In 44 thalassaemia patients aged 25 + 7 years and 38 healthy subjects, LV torsion and
twisting velocities were determined at rest using speckle tracking echocardiography. Changes in LV torsional
parameters during submaximal exercise testing were further assessed in 32 patients and 17 controls. Compared
with controls, patients had significantly reduced LV apical rotation, torsion, systolic twisting velocity, and diastolic
untwisting velocity. T2 cardiac magnetic resonance findings correlated with resting diastolic untwisting velocity.
The increments from baseline and resultant LV torsion and systolic and diastolic untwisting velocities during
exercise were significantly lower in patients than controls. Significant correlations existed between LV systolic
torsion and diastolic untwisting velocities in patients and controls, both at rest and during exercise. In HL-1 cells
and ventricular myocardium of B6D2F1 mice overloaded with iron, the titin-stained pattern of sarcomeric structure
became disrupted. Gel electrophoresis of iron-overloaded mouse myocardial tissue further showed significant
decrease in the amount of titin isoforms and increase in titin degradation products.

Conclusions: Resting and dynamic LV torsional mechanics is impaired in patients with beta-thalassaemia major. Cell
and animal models suggest a potential role of titin degradation in iron overload-induced alteration of LV torsional

Keywords: Thalassaemia, Ventricular rotation, Ventricular mechanics, Exercise echocardiography, Titin

Background

Iron overload cardiomyopathy is well documented in pa-
tients with beta-thalassaemia major. Nonetheless, the left
ventricular (LV) function usually remains relatively normal
as assessed by conventional echocardiographic imaging
until late in the cardiomyopathic process [1]. These
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conventional echocardiographic indices are derived pri-
marily at resting condition from linear deformation of LV
myocardium [2,3]. Increasing understanding of cardiac
mechanics have been gained from evaluation of resting [4]
and dynamic [5,6] LV torsional mechanics, which provide
information on systolic and diastolic LV performance and
insights into myocardial function at a cellular level.

Left ventricular torsional mechanics plays an important
role with respect to LV ejection and filling [7,8] and is sen-
sitive changes in regional and global LV function [9,10]. It
is characterized by systolic twisting and diastolic untwist-
ing about its long axis as a result of the opposite rotation
of the cardiac apex and base. The twisting motion of the
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left ventricle is important in the Frank-Starling mechanism
[11], while the rate of untwisting has been shown to be a
relatively load-independent index of diastolic function [12].

Changes at a cellular level may perhaps also be reflected
by alterations of LV torsional mechanics. Transplanted hu-
man hearts in early rejection have been shown to display
alterations in systolic twisting and diastolic untwisting pat-
terns [13]. Remodeling after myocardial infarction in ani-
mal models is associated with altered LV torsion [14]. In
experimental cardiomyopathy models, alterations of sarco-
meric proteins, in particular transmural gradient of titin
isoforms [15], has been shown to relate closely to LV tor-
sion. In childhood cancers survivors who had received
anthracycline therapy, we have shown abnormalities of LV
torsional mechanics that precede changes in LV global
function [16]. Importantly, anthracycline is known to in-
duce titin protelolysis [17]. Accumulating evidence sug-
gests oxidative stress may induce degradation of titin via
the activity of calpain-1 [17] or matrix metalloproteinase-2
[18] or both. In iron overloading situations, excessive free
iron within the cardiomyocytes that causes oxidative dam-
age [19,20] may potentially degrade titin and result in early
alteration of LV torsional mechanics.

In this prospective study, we explored the resting and dy-
namic LV torsional mechanics in patients with beta-
thalassaemia major and its relationship with myocardial
iron load. Given the initial echocardiographic findings of
impaired LV torsion, systolic twisting and diastolic untwist-
ing velocities in patients compared with healthy subjects,
we further determined using HL-1 cell and mouse models
of iron overload the impact of iron load on titin proteolysis.

Methods

Subjects

Forty-four patients with beta-thalassaemia major and
normal LV shortening fraction as assessed by two-
dimensional echocardiography were recruited. Patients
with diabetes mellitus and thyroid dysfunction were ex-
cluded. The chelation therapy of patients was noted.
Thirty-eight healthy subjects were recruited as controls.
These included healthy siblings of thalassaemia patients
and voluntary staff members and their friends and rela-
tives. The Institutional Review Board of the University
of Hong Kong/Hospital Authority Hong Kong West
Cluster approved the study and all of the patients gave
informed written consent.

All subjects rest for at least 15 minutes before blood
pressure and cardiovascular assessments. The body weight
and height were measured and the body mass index and
body surface area calculated accordingly. For thalassaemic
patients, the study was performed within one week of
blood transfusion to minimize potential confounding in-
fluence of anaemia on the assessment results.
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Echocardiographic assessment

Echocardiographic assessments were performed using the
Vivid 7 ultrasound machine (GE Medical System, Horten,
Norway). All of the following echocardiographic data were
obtained at rest. The parameters of torsional mechanics
were obtained both at rest and during submaximal exer-
cise. The average values of echocardiographic indices from
three cardiac cycles were used for analyses.

Left ventricular torsion was assessed by two-dimensional
speckle tracking echocardiography as reported previously
[16]. Briefly, the LV apical and basal short-axis planes were
acquired in consecutive fashion at a frame rate of 60-80/
second. The basal level was defined as the level of the mi-
tral valve, while the apical one was defined as the level
of LV cavity alone with no visible papillary muscles. Using
customized EchoPAC software (GE Medical Systems), a
speckle tracking region of interest was generated for evalu-
ation of global LV rotation at the basal and apical levels and
the resultant LV peak torsion, systolic twisting velocity, and
diastolic untwisting velocity.

Exercise testing

Submaximal exercise testing was performed with a su-
pine bicycle according to the McMaster cycle ergometer
protocol [21]. The initial workload was 25 W with a 25
W increase in resistance at 2-minute intervals. Echocar-
diographic acquisitions of the basal and apical short-
axis plane rotation were performed when the heart rate
reached 70% of the age-predicted peak heart rate.

MRI assessment of iron load in patients

T2  cardiac magnetic resonance (CMR) was performed
as described previously [22] and in detail in Additional
file 1 in 31 of the 44 patients who agreed to the study.

Iron loading of HL-1 cardiomyocytes

HL-1 cardiomyocytes were kindly provided by Professor
W.C. Claycomb (Louisiana State University Health Science
Center, New Orleans, LA, USA) [23]. These cells are cur-
rently the only available cardiomyocte cell line that divides
continuously while maintaining a differentiated cardiac
phenotype. The HL-1 cells were cultured in accordance
with the instructions provided and details are described in
Additional file 1. For iron loading, the cells were exposed to
600 uM of FeCl; for 72 hours.

Mouse model of iron load

Iron-loaded mouse model was generated as described pre-
viously [24]. Seven-week-old male B6D2F1 mice were pur-
chased from The Jackson Laboratory (Bar Harbor, Maine,
USA). This part of the study was approved by the Depart-
ment of Health, Hong Kong SAR, and the Committee on
the Use of Live Animals in Teaching and Research, The
University of Hong Kong. The investigations conform with



Chen et al. BMC Cardiovascular Disorders 2014, 14:49
http://www.biomedcentral.com/1471-2261/14/49

the Guide for the Care and Use of Laboratory Animals
published by the US National Institutes of Health and the
ethical policy of our institution is listed as being compliant
with that of NIH (assurance number A5773-01). Mice were
acclimatized for at least one week before experiments. The
8-week-old male B6D2F1 mice were given intra-peritoneal
injection of iron dextran (50 mg iron/ml; Sigma, St Louis,
MO, USA), at 3.1 mg per 25 g body wt per day on a 5 days/
week schedule, for 13 weeks. Control mice received 10%
dextrose (Sigma, St Louis, MO, USA). Mice were sacrificed
by an overdose of isoflurane anaesthesia until lack of respir-
ation for 5 minutes to ensure euthanasia, followed by cer-
vical dislocation. Ventricular tissues were stored at -80°C
until analysis.

Immunocytochemistry, immunohistochemistry and
confocal microscopy
HL-1 cells were fixed and permeated with Cytofix/Cyto-
perm™ solution (Becton Dickinson, Franklin Lakes, NJ,
USA), followed by washes with Perm/Wash™ buffer (Becton
Dickinson, Franklin Lakes, NJ, USA). Non-specific antibody
binding was blocked by incubation with 5% bovine serum
albumin (BSA). Titin PEVK domain was stained with pri-
mary antibody 9D10 (Developmental Studies Hybridoma
Bank at the University of lowa, Iowa, USA) 1:100 diluted in
5% BSA, followed by secondary antibody Cy”5 (Invitrogen,
Life Technologies, Grand Island, NY, USA) 1:100 diluted in
5% BSA. Nuclei were counterstained with DAPIL The pat-
terns of titin staining were analyzed by Zeiss LSM 510 Con-
focal Microscope (Zeiss, Gottingen, Germany).

For determination of titin pattern in mouse heart tissue,
7 um-thick cryosection slides of heart tissue were fixed
and permeated with 0.2% PBST, and then blocked with
10% normal rabbit serum (NRS) in 0.2% PBST. Titin was
stained with antibody 9D10 in 5% NRS and subsequently
with the secondary antibody same as aforementioned.
Confocal images were analyzed by software Image] (NIH,
Bethesda, Maryland, USA).

Gel electrophoresis for titin analysis

Titin was analyzed in ventricular extracts (iron-loaded,
n = 4; control, n = 4) using gel electrophoresis as described
previously®® with details provided in Additional file 1.

Statistical analysis

Clinical data are presented as mean+ SD. The demo-
graphic and echocardiographic parameters of patients
were compared with those of control subjects using un-
paired Student's ¢ test. The resting and exercise echocar-
diographic indices were compared by paired Student’s
t test, while the magnitude of changes in torsional indices
from the resting to exercise state in patients and controls
was compared by unpaired Student’s ¢ test. Relationships
between systolic torsion and diastolic untwisting velocity
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at rest and exercise of the entire cohort and within pa-
tient and control groups, and associations between tor-
sional indices and iron load were assessed by Pearson
correlation analysis. In-vitro study data are presented as
mean + SEM and variables between two groups were
compared by unpaired Student’s ¢ test. Statistical ana-
lyses were performed using SPSS version 16 (SPSS, Inc.,
Chicago, Illinois) and GraphPad Instat 3 (GraphPad
Software, Inc., San Diego, CA, USA). A p<0.05 was
regarded as statistically significant.

Results

Subjects

Forty-four patients (19 males) aged 25+ 7 years were re-
cruited. Chelation therapy regimen at the time of study
were deferiprone with deferoxamine in 26 patients, defera-
sirox in 9, deferoxamine in 7, and deferiprone in 2. Based
on T2 cardiac magnetic resonance performed in 31 pa-
tients, 8 patients had evidence of myocardial iron overload
(T2 <20 ms). All of the patients were free from cardiac
symptoms. Thirty-eight (19 males) healthy young adults
aged 23 + 6 years (p = 0.10) were recruited as controls. Pa-
tients compared with controls were lighter (47.5+9.2 kg
vs 583 +11.8 kg, p<0.001) and had a smaller body sur-
face area (1.45 + 0.17 m” vs 1.64 + 0.18 m?, p < 0.001).

Resting LV torsional mechanics

At baseline, patients had significantly lower LV torsion,
systolic twisting velocity, and diastolic untwisting velocity
compared with controls (all p > 0.05) (Table 1). The signifi-
cantly lower LV torsion was related to the reduced apical
but not basal rotation. Even in patients with T2 values >20
ms, the LV apical rotation, torsion, and systolic twisting
velocities were significantly lower than those of controls.
While these parameters were also lower in the 8 patients
with myocardial iron overload (T2 <20 ms), the small
number limits the power to detect statistical significant dif-
ferences in these variables except for apical rotation. T2’
findings correlated inversely with LV diastolic untwisting
velocity (r=-046, p=0.013), but not with peak systolic
torsion (p=0.54) twisting velocity (p=0.65). Hence, the
greater the myocardial iron load, the lower the diastolic
untwisting velocity.

Dynamic LV torsional mechanics

Thirty two patients and 17 controls agreed to undergo fur-
ther submaximal exercise testing in the exercise laboratory.
During supine bicycle exercise testing, both patients and
controls showed significant increase in peak LV torsion and
systolic twisting and diastolic untwisting velocities (all p <
0.05) (Figure 1). The magnitude of changes from baseline
was, however, significantly smaller in patients than controls
for all of the three parameters: peak torsion (2.7 £ 3.6 de-
gree vs 6.9 £ 3.5 degree, p < 0.001), systolic twisting velocity



Chen et al. BMC Cardiovascular Disorders 2014, 14:49
http://www.biomedcentral.com/1471-2261/14/49

Page 4 of 10

Table 1 Comparison of torsional parameters at rest between patients and controls

All patients (n =44)

Patients with CMR performed Controls (n=38)

T2*>20 ms (n=23)

T2*<20 ms (n=8)

Basal rotation (degree) —44+20 —46+2.1 —45+17 —37+28
Apical rotation (degree) 93 +3.6% 93 +3.3* 85+43* 125+51
LV torsion (degree) 11.8+£33% 11.7 £35% 121£35 135£31
Systolic twisting velocity (degree/s) 937 £21.9% 97.6x21.1* 98.9+20.1 1152+£369
Diastolic untwisting velocity (degree/s) —08.2 £23.3% -1059+214 -93.1+£259 —109.8+263
SMR = cardiac magnetic resonance.

p < 0.05 vs controls.

(42.5 £ 224 deg/s vs 69.2 +33.2 deg/s, p=0.002), and dia- Discussion

stolic untwisting velocity (-46.0 +29.8 deg/s vs -95.8 + 9.5
deg/s, p < 0.001). Hence, when target heart rate was reached
during submaximal exercise, patients exhibited significant
worse LV torsional mechanics: peak torsion (12.5+4.5
degree vs 20.3 £ 5.0 degree, p <0.001), systolic twisting
velocity (122.4 +£26.7 deg/s vs 170.2 £ 33.3 deg/s, p<
0.001), and diastolic untwisting velocity (-127.7 +33.0
deg/s vs -205.6 £ 27 .4 deg/s, p < 0.001). There were no cor-
relations between T2 findings and the various LV torsional
parameters during submaximal exercise (all p > 0.05).

Relationships between systolic torsion and diastolic
untwisting

At rest, significant negative correlations existed between LV
systolic torsion and diastolic untwisting velocities in both
patients and controls (Figure 2a). Similar relationships
existed during submaximal exercise, albeit with smaller cor-
relation coefficients with subgroup analyses (Figure 2b).

Disruption of titin pattern in HL-1 cells and iron-loaded
mouse model

Figures 3a show disruption of the organized sarcomeric
structure stained for titin in normal HL-1 cell culture
when exposed to FeCl; for 72 hours. After 13 weeks of
intra-peritoneal iron dextran administration, the ventricu-
lar tissue of B6D2F1 mice showed disorganized pattern of
titin stain with loss of the normal striated pattern seen in
control heart tissue (Figure 3b).

Degradation of titin in iron-loaded mouse heart tissue
Iron-induced titin degradation was quantified by gel elec-
trophoresis (Figure 4). Control heart tissues expressed pre-
dominantly T1 bands, which contained titin isoforms
N2BA and N2B, and a minor T2 band, the titin degradation
product. By contrast, iron-loaded heart tissues showed an
increase in T2/(myosin heavy chain) MHC ratio and a de-
crease in T1/MHC ratio (p <0.05), and appearance of a
faint titin degradation subfragment.

The important findings of the present study are 1) im-
paired LV torsional mechanics in patients with beta-
thalassaemia major at rest, 2) diminished incremental
response of systolic twisting and diastolic untwisting pa-
rameters during submaximal exercise stress, 3) coupling
of systolic torsion and rate of diastolic untwisting, 4) an
inverse relationship between myocardial iron load and LV
diastolic untwisting velocity, and 5) evidence of titin dis-
ruption and degradation in cell and mouse models of iron
load, implicating its potential pathogenetic role in causing
abnormalities of resting and exercise LV torsional me-
chanics found in patients clinically.

Torsional mechanics in thalassaemia

The understanding of torsional mechanics in patients with
beta-thalassaemia major has been limited. Using vector
velocity imaging, Gareau et al. have recently reported on
reduced LV torsion and apical rotation in patients with
beta-thalassaemia major and Blackfan-Diamond anaemia
with low T2 value (<20 ms) [25]. Assessments were per-
formed at rest and rates of systolic twisting and diastolic
untwisting were not determined. In a relatively small co-
hort of 19 patients with various causes of anaemia requir-
ing regular blood transfusion, Seldrum et al. found using
CMR reduced apical rotation in patients with (T2 <20
ms) and without (T2" > 20 ms) significant myocardial iron
load and decreased LV torsion only in those with T2 <20
ms compared with controls [26]. Differences in LV twist-
ing and untwisting rates could not be demonstrated, prob-
ably due to limited statistical power. Recently, Monte et al.
found using speckle tracking echocardiography also re-
duced apical rotation and LV twist and torsion [27].

While our findings corroborate those reported previously,
we found additionally significant reduction of rates of LV
systolic twisting and diastolic untwisting in our patient co-
hort. Albeit modest and without implications on causality,
the inverse relationship between iron load and diastolic
untwisting velocity may have pathophysiologic significance.
Rapid LV diastolic untwisting has been shown to correlate
with the time constant of relaxation during isovolumic re-
laxation [12] and intraventricular pressure gradient after
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mitral opening, and hence regarded as an important deter-
minant of LV suction [6] and early LV diastolic function
[28]. Indeed, impaired LV relaxation as assessed by con-
ventional indices has been shown to precede systolic func-
tion in beta-thalassaemia major [29,30] and myocardial
T2 values have also been shown to correlate with CMR-
derived early to late diastolic ventricular filling [31].

Exercise torsional mechanics

Using dobutamine stress echocardiography, we [32] and
others [33] have shown reduced LV contractile reserve in
thalassaemia patients. To our knowledge, this is the first
study to assess dynamics of LV torsional mechanics in these
patients during exercise stress. Our findings of increased

LV torsion and rates of twisting and untwisting in both
controls and patients, albeit differing in magnitude, concur
with the reported physiological adaptive LV torsional me-
chanics during exercise in healthy subjects [5,6]. Nonethe-
less, this adaptive response was significantly blunted in our
patients, which may have implications on efficient LV filling
during exercise and exercise incapacity. Enhanced LV
untwisting at exercise, due to the release of energy stored
during LV twist, plays a key role in maintaining LV filling
pressure. This acts through an increase in LV suction and
intraventricular pressure gradient with shortening of dia-
stole during exercise [6]. Blunting of the augmentation of
LV twisting and untwisting response in our patients, and
which has also been reported to occur with aging [34] and
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(Figure 2), implicating that the diminished force of re-
coil occurs not only at rest but is further exaggerated
during exercise stress in patients. While the exact mech-
anism of altered torsional mechanics at rest and during
exercise in thalassaemia patients remains to be unveiled,
given the demonstrated development of restoring force by
cardiac titin in shortened cardiomyocytes [38], we further
tested using cell and animal models the hypothesis that
iron load may induce titin degradation.

Titin degradation

Titin, the largest protein in the body, acts as a structural,
elastic, and signaling molecule in cardiomyocytes [40]. In
particular, its role as a bidirectional spring that contributes
to passive myocardial stiffness and elastic recoil of cardio-
myocytes has been the focus of attention in cardiac dis-
eases. Titin is vulnerable to damage by oxidative stress
[41], which is characteristic of iron overload [19,20]. Our
findings in cell and animal models of iron load support
the notion that iron overload causes disorganization and
degradation of cardiac titin. Although direct evidence of
titin degradation being linked to alteration of LV twist is
lacking based on the current study design, several pieces
of evidence suggest that this may probably be the case: i)
titin has been shown to develop restoring force in rat car-
diomyocytes and a major determinant of diastolic function
[38], ii) change of titin isoform induced by ventricular
pacing in an animal model of heart failure has been associ-
ated with reduced systolic twist and diastolic untwisting
[15], and iii) in survivors of childhood cancers who had re-
ceived anthracyclines, which have been shown to induce
titin proteolysis in vitro [17], we [16] and others [42] have
demonstrated impaired LV torsional mechanics.

Clinical implications

Detection in our patient cohort of abnormal LV systolic
and diastolic torsional parameters despite normal conven-
tional and tissue Doppler indices of LV function suggests
the greater sensitivity of torsional parameters in detecting
subtle LV dysfunction in thalassaemia major, although the
use of these parameters in accurate quantification of myo-
cardial iron load appears limited. As alluded to earlier, al-
tered LV untwisting may perhaps contribute to impaired
exercise capacity documented in thalassaemia major pa-
tients [36]. Our demonstration of a potential role of titin
degradation in causing altered LV mechanics has potential
implications in the development of novel therapeutic strat-
egies for iron overload cardiomyopathy. Calpain has been
shown to mediate titin proteolysis with induction by
anthracyclines [17], while matrix metalloproteinase-2 has
been demonstrated to contribute to titin degradation in
myocardial ischaemia-reperfusion injury [18]. While little
information is available to date on therapeutic measures
to improve LV twist mechanics [43], further mechanistic

Page 8 of 10

definition of titin degradation in iron load may shed light
on the application of pharmacological inhibition of spe-
cific proteases in preventing and treating cardiac dysfunc-
tion related to iron overload.

Limitations

Several limitations to this study warrant comments.
Firstly, our patients are relatively young with no congestive
heart failure. Whether the findings hold true for those
with clinically manifested iron induced cardiomyopathy
require further studies for confirmation. Nonetheless, im-
paired LV torsional mechanics has been well documented
in other causes of heart failure [4,10]. Secondly, the small
number of patients with myocardial iron overload has lim-
ited statistical power to unveil other aspects of abnormal
torsional mechanics apart from reduced apical rotation.
Thirdly, it would have been ideal to compare resting and
dynamic torsional mechanics among patients receiving
different chelation therapies, although the relatively small
number of patients limits the statistical power to do so in
this study. Fourthly, while the present study provides the
proof of concept that iron overload induces titin degrad-
ation, the mechanism remains to be unveiled. Further-
more, other factors apart from iron loading per se may
also contribute to the observed alteration in resting and
exercise torsional mechanics and require further clarifica-
tion. Finally, whether the findings in the mouse model of
iron overload may be translated to human subjects with
beta-thalassaemia major remain uncertain.

Conclusions

This study demonstrates impaired resting and dynamic LV
torsional mechanics in patients with beta-thalassaemia
major. Furthermore, we found in these patients a close rela-
tionship between LV systolic torsion and diastolic untwist-
ing and an association between myocardial iron overload
and worse diastolic untwisting. Importantly, cell and animal
models of iron overload provide a novel piece of evidence
for a potential role of titin degradation in the alteration of
LV torsional mechanics observed in patients.
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