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Abstract
Background: Detection of characteristic waves, such as QRS complex, P wave and T wave, is one
of the essential tasks in the cardiovascular arrhythmia recognition from Electrocardiogram (ECG).

Methods: A multiscale morphological derivative (MMD) transform-based singularity detector, is
developed for the detection of fiducial points in ECG signal, where these points are related to the
characteristic waves such as the QRS complex, P wave and T wave. The MMD detector is
constructed by substituting the conventional derivative with a multiscale morphological derivative.

Results: We demonstrated through experiments that the Q wave, R peak, S wave, the onsets and
offsets of the P wave and T wave could be reliably detected in the multiscale space by the MMD
detector. Compared with the results obtained via with wavelet transform-based and adaptive
thresholding-based techniques, an overall better performance by the MMD method was observed.

Conclusion: The developed MMD method exhibits good potentials for automated ECG signal
analysis and cardiovascular arrhythmia recognition.

Background
The detection of the major characteristic waves in ECG,
namely the QRS complexes, P and T waves, is one of the
essential tasks in ECG analysis. The performance of an
automated ECG analysis system depends heavily on the
reliable detection of these fiducial waves. The difficulties
of characteristic waves detection lie in oscillations in the
baseline, irregular morphology of the waveforms, and fre-
quency overlapping among the wide-band distribution of
the characteristic waves [1], etc.

A significant amount of research effort has been devoted
to the automated detection of the fiducial (reference)
points of the ECG characteristic waves [2-12]. Most of

these methods are filtering or adaptive thresholding
based, which exhibit limitation in real application. Very
few algorithms work well for the detection of all fiducial
points such as the onsets and offsets of the P wave, T wave
and the QRS complex (also known as the ECG wave
boundaries). The main drawback of filtering-based
approach is that frequency variations in the characteristic
waves often adversely affect its performance. The fre-
quency distribution of QRS complexes generally overlaps
with that of the noise, resulting in both false positive and
false negative detections. The main problems of the
thresholding techniques are their high noise sensitivity
and their low efficiency when dealing with odd morphol-
ogies. Therefore, more sophisticated signal processing
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techniques are needed to facilitate the development of
new detection schemes with higher detection accuracy.

As a nonlinear filtering technique, it has been proven that
morphological dilation and erosion satisfy the causality
and the additive semigroup property required by multi-
scale analysis [13-15] for signals of any dimension with
local maxima and local minima as singular points. The
fiducial points in ECG signal, such as the Q wave, R peak,
S wave, the onsets and offsets of the P wave and T wave,
can be regarded as such singular points [16,17]. In this
paper, a new multiscale morphological derivative (MMD)
transform-based technique, was developed for the detec-
tion of the fiducial points of the ECG characteristic waves.
By applying a morphological derivative transform defined
at different scales, noise sensitivity inherent in single scale
operation can be reduced in MMD method. In addition,
the problem of position deviation existed in wavelet
transform-based techniques [10] can be avoided due to
the nonlinearity of morphological transform. As a result,
tracing across scales to locate the singular points is not
needed.

The proposed multiscale morphological derivative (MMD) 
detector
In the present study, the signal to be processed is limited

to continuous function f : 2 →  with only finite oscil-
lations on a closed interval which is differentiable every-
where except at some singular points. A singular point in
the one-dimensional signal is defined as a point with
derivative on the right and the derivative on the left exist
with different signs.

For the singular point to be defined using multiscale mor-
phological derivative, the derivative on the right can be

represented by morphological sup-derivative , which

is defined as

Similarly, the derivative on the left can be represented by

morphological inf-derivative , which is defined as

Here, the notation of [18] is used to introduce morpho-
logical operators on functions. Denoting the functions, f :

D ⊂ n →  and gs : Gs ⊂ n →  (s > 0), the two fun-
damental operations of multiscale morphology are:

where Dx is the translation of D, Dx = x + t:t ∈ D, sup(f) and
inf (f) refer to the supremum (least upper bound) and
infimum (greatest lower bound) of f, s is scale, and gs is the
scaled structuring function [19]. In the discrete case where
the function is a finite set of points, max() and min() are
used instead of sup() and inf().

We propose a multiscale morphological derivative differ-

ence , to be defined to characterize the difference

between the left and right derivatives as follows:

The scaled version of  at scale s, , can then be

defined as:

By choosing a flat structuring function, where gs(x) = 0, x
∈ G, where G = {x: ||x|| ≤ s} [14], the above multiscale
morphological derivative transform described by Equa-
tion (6) is simplified to the following process: Choose a
moving window with a length of (2s + 1) samples and
find the maximum and minimum values in the window,
as well as the value of the signal at the cental point f(x).
Then, the MMD transform at the central point can be spec-
ified as

At a positive peak in ECG signal, its left derivative is posi-
tive and its right derivative is negative, therefore, positive
peaks in the ECG signal correspond to the local minima

in . At the onset or offset of a positive peak, there is

an abrupt increase in its derivative value from left to right.
So, the onsets and offsets correspond to the local minima

in . As applied to ECG lead II signal, the R peak, Q

wave an S wave correspond to the local minima of the

, while the onsets and offsets of the P wave and T
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wave correspond to the local maxima of the . Hence

the characteristic QRS complex, P wave and T wave, can be
detected using the proposed MMD detector by detecting
the local extrema in the MMD transformed signal.

Characteristic wave detection in ECG using the MMD 
detector
The MMD detector is a single lead detection method. In
this paper, we only use the ECG lead II for algorithm
development and testing. A similar analysis can be done
to extend method to other leads. The detailed procedure
for ECG characteristic wave detection using the proposed
MMD detector, is described as follows:

1. ECG signal is preprocessed by morphological filtering
for noise reduction and baseline correction.

2. Multiscale morphological transform is performed on
the preprocessed input signal.

3. The local maxima and minima with absolute amplitude
larger than a threshold, Thf, at a selected scale sm are
detected (sm = 20 for MIT-BIH database and sm = 15 for QT
database in this study). The local minima with absolute
amplitude larger than a threshold, ThR, are detected as R
peaks, where, the selection of ThR and Thf is based on an
adaptive thresholding from the histogram of the MMD
transformed data.

4. For each detected R peak, the first local maximum point
on its left is detected as the beginning of the R wave; the
first maximum point on its right side is detected as the end
of the R wave.

5. The first local minimum from the left of the positive R
wave is detected as the Q wave. If the minimum cannot be
detected, the Q wave is judged to be missing. (There is a
time interval for Q wave detection, which is set as the
prior clinical value of QRS complex, here, 0.12s).

6. The first local minimum from the right of the positive
R wave is detected as the S wave. Otherwise, the S wave is
judged to be missing. Same time interval as for Q wave
detection is set for S wave detection.

7. The subsequent two consecutive local maxima from the
left of the Q wave are detected as the offset and onset of
the P wave; the first and second local maxima from the
right of the Q wave are detected as the onset and offset of
the T wave, respectively.

The preprocessing in step 1 is performed as follows:

where fo is the original input signal; fb is the baseline drift
signal; f is the signal after preprocessing; o is morpholog-
ical opening operator; • is morphological closing opera-
tor; structuring elements, Bo, Bc and B, are selected based
on the properties of ECG characteristic waves. Further
details can be found in [20]. For each preprocessed signal,
its morphological derivative at scale sm was calculated
according to Equation (7) and its local maxima and
minima were detected. It is known that the number of
maxima or minima at a larger scale is much less than that
at a lower scale. In addition, high frequency noise decays
greatly at large scales so that less extrema due to noise are
found at larger scale. Therefore, morphological derivative
transformed signal at a larger scale was used for detecting
the locations of the objective feature points. However, in
order not to smooth the characteristic waves in ECG, sm
should be as large as possible but less than Wwfs, where
Ww is the width of the characteristic wave, and fs is the
sampling frequency of ECG signal. The width of QRS is
generally from 0.06s to 0.12s. The P wave and the T wave
are generally longer than the QRS complex. Hence, in the
proposed study, sm = 20 for MIT-BIH database and sm = 15
for QT database, were chosen. No calculation was per-
formed at other scales since MMD operation does not
cause drift of singular points across different scales.

For the detection of local maxima and minima, two
thresholds ThR and Thf were used, which were adaptively
computed from the histogram of the MMD transformed
data. The two between-peak valleys in the histogram gave
rise to the values of ThR and Thf. ThRwas used for the detec-
tion of the local minima, which correspond to R peaks; Thf
was used for the detection of the local minima, which cor-
respond to other characteristic waves.

In any single ECG beat, the R peak, Q wave and S wave
correspond to adjacent local minima in the morphologi-
cal derivative-transformed signal. The onset and offset of
the P wave correspond to local maxima adjacent to the Q
wave. In the normal cases, the onset and offset of the T
wave are local maxima adjacent to S wave. Otherwise, the
T wave is judged as inverted. However, for other abnormal
T waves, such as the biphasic T wave, the MMD detector
may falsely detect the onset and offset of the T wave.

Results and discussion
The proposed morphological approach for the character-
istic wave detection in ECG signal was tested using the
first ECG leads from the MIT-BIH arrhythmia database
[21] and the QT database [22]http://www.physionet.org,
which were developed with the aim to be benchmarking
references for automated analysis of ECG. The MIT-BIH
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arrhythmia database contains 48 records (each 30 min-
utes long) with a sampling frequency of 360 Hz. The QT
database is a mixed database with a sampling frequency of
250 Hz, which consists of 105 excerpts (each 15 minutes
long) taken from other ECG databases, where, 15 from
MIT-BIH Arrhythmia Database, 6 from the MIT-BIH ST
Change Database, 13 from the MIT-BIH Supraventricular
Arrhythmia Database, 10 from the MIT-BIH Normal Sinus
Rhythm Database, 33 from the European ST-T Database,
24 from "sudden death" patients from BIH, and 4 records
from the MIT-BIH Long-Term ECG Database.

For each input ECG signal, the following procedures were
performed: (i) signal preprocessing; (ii) multiscale mor-
phological derivative transform; (iii) detection of local
maxima and minima in morphological derivative-trans-
formed signals; (iv) detection of characteristic waves in
the original ECG signal. Some results using MMD detector
for characteristic wave detection are given in Figure 1,
where (a) is for normal ECG beat, (b) is for left bundle
branch block (LBBB) ECG beat, (c) is for atrial premature
contraction (APC), and (d) is for premature ventricular
contraction (PVC). In each subfigure, the three plots from
top to bottom are: the single ECG beat selected from the
MIT-BIH database; the MMD transformed signal with
marked points (the onset and offset of the R wave are
marked with '∆'; other fiducial points, such as, the Q
wave, R peak, S wave, as well as the onsets, offsets, the
peaks of the P wave and T wave, are marked with '*'); the
automatically detected characteristic waves are in solid
line.

As shown in Figure 1, the characteristic waves in normal
beat are observed to be well detected. For LBBB, in spite of
the appearance of a sub-R peak, the boundaries of all
waves are still well detected. In APC or PVC no preceding
premature P wave appears. In addition, the position of the
left '∆ ' overlaps with the '*' because the onset of the pre-
ceding T wave is submerged in the QRS complex. The
position of the right '∆' also overlaps with the '*' and the
Q wave is judged to be missing.

Figure 2 gives more results of characteristic wave detection
in ECG signal series. It is obvious that all three character-
istic waves (the QRS complex, the P wave, the T wave) in
ECG time series with normal beats, APCs, and LBBB beats,
are detected reliably. Even the onsets and offsets of
inverted T waves in PVCs can be detected reliably.

More than 20000 annotated ECG beats randomly selected
from MIT-BIH arrhythmia database were used to test the
performance of the proposed MMD detector. An overall
false detection rate of 0.35% was obtained for the QRS
complex detection. In addition, more than 2500 anno-
tated ECG beats randomly selected from the QT database

were tested for evaluating the performance of the pro-
posed MMD detector for ECG wave boundaries detection.
In the QT database, a minimum of 30 beats from each of
its 105 records had been manually annotated by one or
more cardiologists. The annotation files were taken as ref-
erence for evaluating the performance of automated algo-
rithms for detecting the onsets and offsets of the P wave, T
wave, and the QRS complex during ECG analysis.

In order to quantify the performance of ECG characteristic
wave detection by the proposed MMD technique, three
parameters were used, which included the mean error (m)
and standard deviation (σ) of the differences between the
annotation results and the automated detection results, as
well as Sensitivity (Se). m is used to determine how close
the automated detection results are to the annotation
results. σ gives an idea of the stability of detection. Se is

defined as , for measuring the detec-

tion sensitivity, where TP is the number of true detections;
FN is the number of manual annotations that are not reg-
istered in the automatic detections.

The statistical results for m, σ, and Se, for ECG fiducial
points and characteristic waves detection by the proposed
MMD technique were compared with the threshold-based
detector (TD) [22] and the wavelet-based detector (WD)
[23], and they are shown in Table 1. The accepted stand-
ard deviation tolerances from the measurements required
by CSE were given in the last row of Table 1.

The proposed MMD method works best for the QRS com-
plex detection. Lower values of mean bias and standard
deviation as well as higher value of detection sensitivity
are observed. The average detection bias for the QRS's
onset and offset are 3.5 ms and 2.4 ms respectively. The
corresponding standard deviations are 6.1 ms and 10.3
ms, both of which are within the acceptable limits
required by the CSE committee.

However the requirements can not be fully satisfied by the
TD and WD methods although the mean bias obtained by
the WD method is a little better than the results obtained
by the MMD method. As for the P wave onset detection,
only the MMD method can fulfill the CSE requirement
while it fails for the P wave offset detection. The WD
method performs better for P wave offset detection while
worse for P wave onset detection compared with the
MMD method. TD method fails to meet CSE require-
ments for both P wave onset and offset. As for the T wave
offset detection, all three methods can satisfy the limit
required by the CSE committee. Among them, the MMD
and the WD methods perform much better than the TD
method. The clinically important intervals for arrhythmia
recognition, such as the PR interval (from the onset of the

Se
TP

TP FN
=

+
×100
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P wave to the onset of the R wave), the QT interval (from
the Q wave to the offset of the T wave), are not related to
the positions of the offset of the P wave and the onset of
the T wave. Therefore, the weakness of the proposed
MMD technique does not cause significant problem for
arrhythmia recognition. The correlation coefficients
between the results obtained by MMD method and those
computed from annotation data are 0.9264 for PR inter-
val, 0.9542 for QRS complex, and 0.9316 for QT interval.

The proposed MMD method for ECG wave boundary
detection is well performed with reasonable mean bias
and standard deviation values within the limits required

by CSE, on over 79% of the records. In the QT database,
best detection performance is observed for records from
the MIT normal sinus rhythms database. Records with
poor detection performance are mostly from the Euro-
pean ST-T database and the Supraventricular database, in
which, low signal-to-noise ratio or non-homogeneous
repolarization exists. In summary, it is concluded that the
proposed MMD detector has acceptable performance
comparable to those given by experts.

Conclusion
In this paper, a new algorithm based on multiscale mor-
phological derivative transform, called MMD detector,

Results of characteristic wave detection for single ECG beatFigure 1
Results of characteristic wave detection for single ECG beat. The three plots in each subplot from top to bottom are: original 
ECG signal; the MMD transformed signal at scale 20 with the detected characteristic points marked; detected characteristic 
waves in solid line. (a) Normal ECG beat (b) LBBB (c) APC (d) PVC.

(a) (b)

(c) (d)
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has been developed for fiducial point detection and
applied for ECG wave boundary detection. The MMD
detector could not only work for the QRS complex, but
also the onsets and offsets of the characteristic waves. The
standard deviations for important ECG characteristic
wave detection obtained by the proposed MMD detector
were within the limits required by the CSE committee.
Furthermore, the statistical results obtained by the MMD
detector were compared with those obtained by wavelet
transform-based and adaptive thresholding-based tech-
niques. In overall, better performance by the MMD tech-
nique was observed, considering that less empirical
parameters were needed. Therefore we conclude that the
proposed MMD method exhibits good potentials in the
clinical applications for automated analysis of ECG signal.
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Detection results of ECG series, from top to bottom, they are: original ECG signal; MMD transformed signal with fiducial points marked; detected characteristic waves highlighted in boldFigure 2
Detection results of ECG series, from top to bottom, they are: original ECG signal; MMD transformed signal with fiducial 
points marked; detected characteristic waves highlighted in bold. (a) ECG series with normal beats and PVC (b) ECG series 
with normal beats and APC (c) ECG series with LBBBs.

Table 1: Comparative Results of ECG characteristic wave detection

Technique Parameter Pon Poff QRSon QRSoff Ton Toff

MMD Se(%) 97.2 94.8 100 100 99.8 99.6
m(ms) 9.0 12.8 3.5 2.4 7.9 8.3
σ(ms) 9.4 13.2 6.1 10.3 15.8 12.4

TD Se(%) 96.2 97.0 99.9 99.9 98.8 98.9
m(ms) 10.3 -5.7 -7.3 -3.6 23.3 18.7
σ(ms) 14.1 13.6 10.9 10.7 28.3 29.8

WD Se(%) 89.9 89.9 100 100 99.1 99.2
m(ms) 13.0 5.4 4.5 0.8 -4.8 -8.9
σ(ms) 12.7 11.9 7.7 8.7 13.5 18.8

CSE σ(ms) 10.2 12.7 6.5 11.6 - 30.6

*Results on TD and WD are extracted from [10] and [11] for comparison purpose

(a) (b) (c)
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