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Abstract

Background: It has been suggested that exercise training (ET) protects against the pathological remodeling and
ventricular dysfunction induced by myocardial infarction (MI). However, it remains unclear whether the positive
adjustments on baroreflex and cardiac autonomic modulations promoted by ET may afford a cardioprotective
mechanism. The aim of this study was to evaluate the effects of aerobic ET, prior to MI, on cardiac remodeling and
function, as well as on baroreflex sensitivity and autonomic modulation in rats.

Methods: Male Wistar rats were divided into 4 groups: sedentary rats submitted to Sham surgery (C); trained rats
submitted to Sham surgery (TC); sedentary rats submitted to MI (I), trained rats submitted to MI (TI). Sham and MI
were performed after ET period. After surgeries, echocardiographic, hemodynamic and autonomic (baroreflex
sensitivity, cardiovascular autonomic modulation) evaluations were conducted.

Results: Prior ET prevented an additional decline in exercise capacity in TI group in comparison with I. MI area was
not modified by previous ET. ET was able to increase the survival and prevent additional left ventricle dysfunction in
TI rats. Although changes in hemodynamic evaluations were not observed, ET prevented the decrease of baroreflex
sensitivity, and autonomic dysfunction in TI animals when compared with I animals. Importantly, cardiac
improvement was associated with the prevention of cardiac autonomic impairment in studied groups.

Conclusions: Prior ET was effective in changing aerobic capacity, left ventricular morphology and function in rats
undergoing MI. Furthermore, these cardioprotective effects were associated with attenuated cardiac autonomic
dysfunction observed in trained rats. Although these cause-effect relationships can only be inferred, rather than
confirmed, our study suggests that positive adaptations of autonomic function by ET can play a vital role in
preventing changes associated with cardiovascular disease, particularly in relation to MI.
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Background
Coronary artery disease, together with myocardial in-
farction (MI), is the most prevalent cardiovascular dis-
ease (CVD), and commonly progresses to heart failure
in affected individuals [1]. It has long been known that
cigarette smoking, hypertension, hypercholesterolemia,
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diabetes mellitus, obesity and physical inactivity are the
main risk factors of MI [2], and prevention strategies have
been designed. After MI, autonomic imbalance is usually
followed by abnormalities in the cardiorespiratory reflex
control i.e., impaired baroreflex sensitivity and function,
increased activation of ergoreflex and chemoreflex [3-6].
Thus, autonomic imbalance came to be seen as a key
element in the pathophysiology of ventricular dysfunc-
tion and failure [7].
Metabolic, cardiovascular, autonomic and anti-inflammatory
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researchers to suggest exercise training (ET) as an import-
ant non-pharmacological tool in the prevention and treat-
ment of CVD [8-10]. The effectiveness of ET as a powerful
tool in the treatment of MI abnormalities has been widely
reported in clinical and experimental settings [11-17].
On the other hand, a few studies have evaluated how ET

undertaken prior to a MI affected aerobic capacity, cardiac
function and morphometry, as well as mortality rate. Des-
pite distinct experimental designs and ET regimens, the
data found in the literature suggest that ET protects against
the pathological remodeling and ventricular dysfunction in-
duced by MI in rodents [18-23]. Mechanisms such as the
formation of collateral vessels [24], elevation of heat shock
proteins [25], increased myocardial expression of cyclooxy-
genase [26], antioxidant protection [21] as well as anti-
inflammatory role of exercise [27] have been implicated as
triggers of cardioprotection. However, it remains unclear
whether the positive adjustments on baroreflex and cardiac
autonomic modulations promoted by ET may afford a car-
dioprotective mechanism.
Therefore, the present study was undertaken to inves-

tigate 1) whether ET prior to MI prevents cardiac dys-
function and morphometric derangements; 2) whether
ET prior to MI changes mortality rate; and 3) whether
the potential cardiac benefits of ET could be associated
with preserved baroreflex sensitivity and cardiac auto-
nomic modulation.

Methods
Animals
Experiments were performed in adult male Wistar rats
(275-300 g) from the Animal House of the São Judas
Tadeu University, São Paulo, Brazil. Rats were fed standard
laboratory chow and water ad libitum. The animals were
housed in collective polycarbonate cages in a temperature-
controlled room (22-23°C) and under 54-55% humidity
with a 12-h dark–light cycle (light 07:00-19:00 h). The
experimental protocol was approved by the institutional
animal care and use committee of the São Judas Tadeu
University (008/2013), and this investigation was con-
ducted in accordance with the Principles of Laboratory
Animal Care formulated by the National Institutes of
Health (National Institutes of Health Publication No., 96-
23, Revised 1996).
The rats were randomly assigned to four groups: sed-

entary control rats submitted to Sham surgery (C, n = 8);
trained control rats submitted to Sham surgery (TC, n = 8);
sedentary rats submitted to MI surgery (I, n = 12), trained
rats submitted to MI surgery (TI, n = 10).

Exercise training
Sedentary and trained rats were adapted to the treadmill
(10 minutes per day; 0.3 km/h) for 5 days. All animals
were submitted to a maximal treadmill exercise test to
determine aerobic capacity and exercise training intensity
at the beginning of the protocol (initial evaluation), after
4 weeks (to training intensity adjustments, data not show),
after ET protocol (final evaluation), and 2 days after Sham
or MI surgeries. Our group previously demonstrated that
maximal treadmill exercise test can detect differences in
aerobic performance; since that the maximal running
speed achieved in the test presented a good correlation
with the maximum oxygen consumption [28].
ET was performed on a motorized treadmill at low-

moderate intensity (50%-70% maximal running speed)
for 1 hour a day, 5 days a week for 8 weeks, with a grad-
ual increase in speed from 0.3 to 1.2 km/h [13].
Myocardial infarction induction
Anaesthetized rats (80 mg/kg ketamine and 12 mg/kg
xylazine, i.p.) underwent surgical occlusion of the left
coronary artery, which resulted in MI as described pre-
viously [16,17]. Briefly, after intubation, animals were
positive-pressure ventilated with room air at 2.5 mL, 65
strokes/minute with a pressure-cycled rodent ventilator
(Harvard Apparatus, Model 683, Holliston, MA, USA).
For induction of MI, a 2-cm left lateral thoracotomy was
performed in the third intercostal space, and the left an-
terior descending coronary artery was occluded with a
nylon (6.0) suture at approximately 1 mm from its origin
below the tip of the left atrium. The C and TC animals
underwent the same procedures except that myocardial
ischemia was not induced – Sham surgery. The chest
was closed with a silk suture.
Echocardiographic evaluation
One day after Sham or MI surgeries, echocardiographic
evaluations were performed by a blinded observer, under
the guidelines of the American Society of Echocardiog-
raphy. Rats were anaesthetized (80 mg/kg ketamine and
12 mg/kg xylazine, i.p.), and images were obtained with a
10-14 mHz linear transducer in a SEQUOIA 512 (Acuson
Corporation, MountainView, CA, USA) for measurements
of parameters: left ventricular mass (LVmass); left ven-
tricular end-diameter during diastole (LVDD); relative wall
thickness (RWT); fractional shortening (FS); ejection frac-
tion (EF); E wave A wave ratio (E/A); left ventricular isovo-
lumetric relaxation time (IVRT); myocardial performance
index (MPI), as described in detail elsewhere [16,17].
The MI area was delimited taking into account the

movement of LV walls during initial and final echocar-
diographic evaluations by a blinded observer. MI was
defined by echocardiography as any segmental wall mo-
tion abnormality such as hypokinesis, akinesis and dys-
kinesis, as described previously [14,16,17]. Our group
previously showed strong correlations between the MI area
assessed by echocardiogram and post mortem histological
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analysis [14,16,17,29], showing that this is a valid method
to estimate MI area in rats.

Hemodynamic assessments
Twenty-four hours after echocardiographic evaluation, 2
catheters filled with 0.06 mL of saline were implanted into
the femoral artery and femoral vein of the anesthetized rats
(80 mg/kg ketamine and 12 mg/kg xylazine, i.p.). On the
next day, the arterial cannula was connected to a strain-
gauge transducer (Blood Pressure XDCR; Kent Scientific,
Torrington, CT), and arterial pressure (AP) signals and
pulse intervals (PI) were recorded over a 30-minute period
in conscious animals, as previously described [16,17].
Sequential bolus injections (0.1 mL) of increasing doses

of phenylephrine (0.25-32 mg/kg) and sodium nitroprus-
side (0.05-1.6 mg/kg) were given to induce increases or
decreases in mean AP responses (for each drug), ranging
from 5 to 40 mmHg. Baroreflex sensitivity was expressed
as bradycardic response (BR) and tachycardic response
(TR) in beats per minute per millimeter of mercury, as de-
scribed elsewhere [16,17].

Cardiac autonomic modulation
The overall variability of the pulse interval (PI) was
assessed in the time and frequency domains by spectral
estimation in the 30-minute recorded basal period. Fluc-
tuations in PI were further assessed in the frequency do-
main by means of autoregressive spectral estimation, as
described elsewhere [29,30]. Briefly, the PI series derived
from each recording were divided into 300 beat seg-
ments with a 50% overlap. The spectra of each segment
were calculated via the Levinson-Durbin recursion and
the order of the model chosen according to Akaike’s cri-
terion, with the oscillatory components quantified in LF
(0.2-0.6 Hz) and high frequency (HF; 0.6–3.0 Hz) ranges.
The normalized units were obtained by calculating the
power of LF and HF correlating each to the total power,
after subtracting the power of the very LF component
(frequencies < 0.2 Hz).

Statistical analyses
Statistical analyses were performed with SPSS software
(Version 17.0 for Windows; SPSS Inc., Chicago, USA).
Data are reported as mean ± SEM. After confirming that
all continuous variables were normally distributed using
Table 1 Maximal running speed speed (Km/h) in sedentary co
sedentary rats submitted to myocardial infarction (I, n = 9), tr

Parameters/Groups C C

Initial 1.20 ± 0.11 1.50 ±

Final 1.50 ± 0.06 2.40 ±

Post-MI/Sham 1.50 ± 0.04 2.40 ±

Values are expressed as mean ± SEM. Repeated-measures ANOVA. #p < 0.05 vs. initi
group; *p < 0.05 vs. C; †p < 0.05 vs. I.
the Kolmogorov–Smirnov test, statistical differences be-
tween the groups in all evaluations were obtained by
two-way (exercise training and myocardial infarction)
analysis of variance (ANOVA) followed by the Bonferroni
post-test. Statistical differences between the data from
maximal treadmill exercise test measured at the beginning
of the protocol (initial evaluation), after ET or following
protocols (final evaluation), and 2 days after Sham/MI sur-
geries were assessed using repeated-measures ANOVA.
Pearson’s correlation was used to study the association be-
tween variables. The survival analyses were estimated by
the Kaplan–Meier method and compared by the log-rank
(Mantel–Cox) test. All tests were two sided and the sig-
nificance level was established at P < 0.05.

Results
Mortality evaluation
During exercise training protocol or after Sham surgery,
no death was registered in experimental groups. After
MI surgery, mortality rate was higher in I animals (3
deaths among 12 rats, 25 %) when compared to TI (no
deaths).

Animals
Body weight was similar among all studied groups at the
beginning of the protocol (~289 ± 6 g). At the end of the
protocol, all experimental groups increased body weight
when compared to their initial values (C: 422 ± 5; TC:
368 ± 10; I: 410 ± 5; TI: 367 ± 10 g); however, TC and TI
groups had reduced body weight when compared to C
and I groups, respectively. Similarly, retroperitoneal adi-
pose tissue weight was decreased in TC (2.4 ± 0.2 g) and
TI (2.2 ± 0.2 g) rats when compared to C (5.2 ± 0.1 g)
and I (4.9 ± 0.1 g) rats.
Maximal running speed values obtained at initial, final

and after Sham or MI surgeries are presented in Table 1.
At the initial evaluation, maximal running speed was
similar between the groups; however, at the final evalu-
ation TC and TI groups presented increased physical
capacity when compared to C and I groups, as well as in
relation to their initial evaluation. After Sham surgery,
physical capacity remained similar in C and CT animals
when compared to their final evaluations; however, after
MI, I animals presented decreased physical capacity
when compared to C animals, and to their initial and
ntrol rats (C, n = 8); trained control rats (TC, n = 8);
ained rats submitted to myocardial infarction (TI, n = 10)

T I TI

0.06 1.20 ± 0.06 1.50 ± 0.06

0.03#* 1.50 ± 0.03 2.40 ± 0.05#*†

0.05#* 0.90 ± 0.04#$* 1.20 ± 0.04$*†

al evaluation in the same group; $p < 0.05 vs. final evaluation in the same
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final evaluations. On the other hand, ET prevented an
additional decrease in maximal running speed in TI rats
(Table 1).

Left ventricular morphometry and function
The echocardiographic parameters of LV morphometry
and function are shown in Table 2. MI area was similar
between I and TI animals. Relative wall thickness was re-
duced in I group when compared to C group. LV mass
and relative wall thickness values were increased in TC
and TI groups when compared to C group. Furthermore,
LV mass and relative wall thickness were also increased in
TI animals when compared to I animals. Left ventricular
end-diameter during diastole remained unchanged in ex-
perimental groups.
Regarding LV function, TC group improved ejection

fraction and myocardial performance index when com-
pared to C group. I rats demonstrated reduced systolic
function parameters (fractional shortening and ejection
fraction), as well as increased E/A ratio and myocardial
performance index when compared to C rats. It should
be stressed that ET was able to prevent systolic, dia-
stolic and global dysfunction in TI animals, as observed
by normalization of fractional shortening, E/A ratio
and myocardial performance index. Although ET did
not prevent low ejection fraction in TI group, these
values remained higher when compared to the I group
(Table 2).

Hemodynamic evaluations
Hemodynamic parameters can be observed in Table 3. No
changes were observed in systolic, diastolic or mean
Table 2 Echocardiographic parameters in sedentary control r
rats submitted to myocardial infarction (I, n = 9), trained rats

Parameters/Groups C

Morphometric

MI area (%) —— —

LVmass (g) 1.11 ± 0.03 1.62

LVDD (cm) 0.72 ± 0.02 0.74

RWT 0.40 ± 0.01 0.53

Systolic Function

FS (%) 39 ± 1 4

EF (%) 70.2 ± 0.9 76.1

Diastolic Function

E/A 1.61 ± 0.11 1.67

IVRT (ms) 29 ± 1 2

Global Function

MPI 0.37 ± 0.03 0.15

Values are expressed as mean ± SEM. LVmass - left ventricular mass; LVDD - left ventric
shortening; EF – ejection fraction; E/A – E wave A wave ratio; IVRT- left ventricular isovo
(exercise training and myocardial infarction) analysis followed by the Bonferroni post-t
arterial pressure between experimental groups. In con-
trast, heart rate was reduced in TC group when compared
to C group. An increase in heart rate was observed in I an-
imals when compared to C. This increase was prevented
by previous ET, as observed in TI rats.
Baroreflex sensitivity, evaluated by bradycardic and

tachycardic responses evoked by arterial pressure rises
and falls, was impaired in the I group when compared
to C group (Figure 1). Previous ET was able to prevent
the baroreflex sensitivity reduction, as observed in TI rats.
Cardiac autonomic modulation
Values of PI variability parameters are presented in Table 4.
Impairments of Variance, RMSSD, absolute values of LF
band (Figure 2A) and HF band (Figure 2B), as well as LF/
HF of PI, were observed in I group when compared to C
group. Previous ET was able to prevent the impairments
of PI variability parameters in time and frequency do-
mains, mainly related to absolute values of LF (Figure 2A)
and HF (Figure 2B) bands, and autonomic balance, as ob-
served in TI rats (Table 4).
Correlations
Positive correlations were observed between LF/HF ra-
tio and relative wall thickness (r = 0.6569; P = 0.0016)
(Figure 3A), and with left ventricular fractional shortening
(r = 0.8102; P < 0.001) (Figure 3B). On the other hand, nega-
tive correlations were obtained between absolute values of
HF band and E/A ratio (r =-0.7461; P = 0.0011) (Figure 3C),
and with myocardial performance index (r =-0.6349; P =
0.0047).
ats (C, n = 8); trained control rats (TC, n = 8); sedentary
submitted to myocardial infarction (TI, n = 10)

TC I TI

— 45 ± 3 42 ± 2

± 0.05* 1.14 ± 0.05 1.65 ± 0.11*†

± 0.03 0.74 ± 0.02 0.76 ± 0.03

± 0.03* 0.29 ± 0.01* 0.51 ± 0.03*†

1 ± 3 30 ± 2* 38 ± 1†

± 0.3* 41.2 ± 1.1* 52.4 ± 0.4*†

± 0.01 2.76 ± 0.20* 1.81 ± 0.11†

7 ± 1 29 ± 1 28 ± 3

± 0.02* 0.48 ± 0.03* 0.18 ± 0.04*†

ular end-diameter during diastole; RWT – relative wall thickness; FS – fractional
lumetric relaxation time; MPI – myocardial performance index. ANOVA two-way
est. *p < 0.05 vs. C; †p < 0.05 vs. I.



Table 3 Hemodynamic variables in sedentary control rats
(C, n = 8); trained control rats (TC, n = 8); sedentary rats
submitted to myocardial infarction (I, n = 9), trained rats
submitted to myocardial infarction (TI, n = 10)

Parameters/Groups C TC I TI

SAP (mmHg) 122 ± 2 115 ± 3 115 ± 3 117 ± 4

DAP (mmHg) 86 ± 3 85 ± 2 80 ± 3 84 ± 2

MAP (mmHg) 98 ± 3 95 ± 2 92 ± 2 95 ± 4

HR (bpm) 319 ± 5 295 ± 4* 339 ± 9* 331 ± 4

Values are expressed as mean ± SEM. SAP – systolic arterial pressure; DAP –
diastolic arterial pressure; MAP – mean arterial pressure; HR – heart rate.
ANOVA two-way (exercise training and myocardial infarction) analysis followed
by the Bonferroni post-test. *p < 0.05 vs. C.
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Discussion
In recent years, pharmacological therapies and changes in
lifestyle, including weight control, physical activity, smok-
ing cessation and reduced consumption of calories in the
diet, have contributed to the primary prevention of CVD.
ET plays a key role in health promotion and has become a
unanimous approach in cardiology [31-34]. The present
work provides strong evidence for the attenuation of MI-
induced cardiac dysfunction by prior to MI moderate-
intensity ET, and, importantly, this effect was associated
with the prevention of post-MI cardiac autonomic im-
pairment. The cardioprotective effect of prior ET was
also confirmed by the reduced peri-operative mortality
observed in trained animals. To our knowledge, this is
the first study to demonstrate that the attenuation of
cardiac autonomic modulation changes may be an im-
portant mechanism associated with the cardioprotec-
tion conferred by ET.
Reduced exercise capacity after MI has been consid-

ered an important predictor of mortality [35,36]. In the
present study, after inducing MI, maximum running
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Figure 1 Baroreflex sensitivity represented by tachycardic and
bradycardic responses in sedentary control rats (C, n = 8); trained
control rats (TC, n = 8); sedentary rats submitted to myocardial
infarction (I, n = 9), trained rats submitted to myocardial infarction
(TI, n = 10). Values are expressed as mean ± SEM. ANOVA two-way
(exercise training and myocardial infarction) analysis followed by the
Bonferroni post-test. *p < 0.05 vs. C; †p < 0.05 vs. I.
speed was reduced in I group in relation to their initial
and final evaluations, as well as when compared with C
group. It is worth noting that ET has been effective in
preventing a decline in aerobic capacity in previously
trained rats undergoing MI. In line with our findings,
Bozi et al. [23] have shown that the ET prior to MI also
prevented further decline in physical capacity in rats,
when evaluated by the total time of the exercise test. In
addition, the efficacy of ET was also demonstrated by
resting bradycardia in CT rats, and by preventing in-
creases in heart rate in TI rats.
Left ventricular remodeling is an indicator of great im-

pact on cardiac mortality after ischemia [37]; however, it is
unclear how exercise affects this remodeling. Although no
change in the MI area have been observed when infarction
was induced following ET, left ventricular mass and rela-
tive wall thickness were further increased in TI animals.
Although additional analysis of cardiomyocyte diameter
and length was not carried out, and molecular markers
of physiological and pathological hypertrophy were not
researched, our data suggest that pathological cardiac
remodeling was indeed prevented in the TI group, since
systolic and diastolic dysfunction were attenuated by
prior ET in these animals.
Likewise, Dayan et al. [18] have shown that three weeks

of swimming training before MI attenuated ventricular re-
modeling and improved left ventricular function, despite
unchanged cardiac dimensions. The authors have sug-
gested that even a short period of training is sufficient
to induce cardiac protection. In contrast, Veiga et al. [38]
have not observed any differences on morphological pa-
rameters, cardiac function nor on the tension of the papil-
lary muscles in swimming trained female rats prior to MI.
It is possible that the observed differences between these
findings and the results of the present study are due to the
type of training performed (swimming vs. treadmill), as
well as to the gender of the chosen animals (females vs.
males). In fact, Bozi et al. [23] have demonstrated that ET
on a treadmill attenuated cardiac dysfunction and struc-
tural deterioration promoted by MI. Similarly, 12 weeks of
aerobic ET increased antioxidant enzymes, decreased oxi-
dative damage and reduced the degree of MI induced by
isoproterenol in male mice hearts [21]. Moreover, it has
been shown that ET performed before MI reprograms the
surviving myocardium and changes its molecular re-
sponse, a fact that may account for, at least in part, cardio-
protective phenotype of the exercised animals [39].
There are multiple mechanisms by which moderate to

vigorous ET may decrease mortality rates associated with
CVD, including antiatherosclerotic, antithrombotic, anti-
ischemic, antiarrhythmic, and antioxidant effects [34,40].
In order to further investigate the possible candidate mech-
anisms associated with the attenuated cardiac dysfunction
and exercise capacity in trained rats prior to MI, baroreflex



Table 4 Pulse interval (PI) variability in time and frequency domains in sedentary control rats (C, n = 8); trained control
rats (TC, n = 8); sedentary rats submitted to myocardial infarction (I, n = 9), trained rats submitted to myocardial
infarction (TI, n = 10)

Parameters/Groups C TC I TI

SD (ms) 11.1 ± 0.8 10.1 ± 1.2 9.0 ± 0.8 10.7 ± 1.4

Variance (ms2) 116.5 ± 17.2 132.6 ± 25.9 23.2 ± 3.7* 107.8 ± 21.8†

RMSSD (ms2) 6.6 ± 0.2 6.7 ± 0.7 4.3 ± 0.2* 8.4 ± 0.6†

LF (%) 26.7 ± 2.6 20.0 ± 1.9 14.9 ± 1.4* 27.3 ± 3.3†

HF (%) 73.2 ± 2.7 82.8 ± 3.2 85.1 ± 1.4 72.6 ± 3.3

LF/HF 0.38 ± 0.05 0.26 ± 0.03 0.18 ± 0.02* 0.39 ± 0.06†

Values are expressed as mean ± SEM. SD - standard deviation of the PI variability; RMSSD - root-mean square of differences of successive RR intervals; LF – low
frequency band; HF – high frequency band; LF/HF – autonomic balance. ANOVA two-way (exercise training and myocardial infarction) analysis followed by the
Bonferroni post-test. *p < 0.05 vs. C; †p < 0.05 vs. I.
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sensitivity and cardiac autonomic modulation were in-
vestigated. In this context, since the classical studies of
Billman et al. [41] and Hull et al. [42], there have been
consistent findings pointing that ET reduces mortality
in patients after MI, particularly when associated with
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Figure 2 Low frequency (indicative of sympathetic modulation,
panel A) and high frequency (indicative of parasympathetic
modulation, panel B) bands of pulse interval variability in
sedentary control rats (C, n = 8); trained control rats (TC, n = 8);
sedentary rats submitted to myocardial infarction (I, n = 9),
trained rats submitted to myocardial infarction (TI, n = 10).
Values are expressed as mean ± SEM. ANOVA two-way (exercise
training and myocardial infarction) analysis followed by the
Bonferroni post-test. *p < 0.05 vs. C; †p < 0.05 vs. I.
increased vagal component and decreased sympathetic
activity. In fact, most clinical and experimental studies in-
dicate that improvement in baroreflex sensitivity and auto-
nomic function as important ET adaptations after MI
[11,13,14,16,17,43,44]; however, their cardioprotective role
remains unclear.
It is well known that after MI catecholamine production

and release from adrenal glands and from cardiac sympa-
thetic nervous system nerve endings are enhanced [45]. In
the failing heart, sympathetic activation results in changes
in beta-adrenergic receptors [46,47] that plays a key role in
left ventricular remodeling [48]. On the other hand, it has
been reported that aerobic ET reduces and restores ad-
renal G protein-coupled receptor kinase-2 enzyme levels
and activity, which results in marked reduction of adrenal
catecholamine production [49]. In addition, 8 weeks of
aerobic ET inhibits cardiac sympathetic nerve sprouting
and restores β3-/β1 adrenoreceptors balance and increases
the expression of β3 adrenoreceptor after MI, resulting in
improvement of cardiac function [50].
In the present investigation, we demonstrated that mo-

derate ET, when performed prior to MI, prevented baro-
reflex sensitivity impairment, sympathetic modulation
increase and parasympathetic modulation decrease, as
observed in TI rats. Furthermore, improvements in
autonomic balance (represented by LF/HF ratio), and in
parasympathetic modulation (HF band) were strongly
correlated with structural, systolic, diastolic and global
left ventricle function. Since the later development of left
ventricular dysfunction has been associated with further
increment in neurohumoral excitation, due to arterial
and cardiopulmonary baroreceptors [51,52], our results
indicate that autonomic parameters preservation by ET
may be associated with attenuated cardiac function ab-
normalities in TI animals.
This work has some limitations that deserve com-

ments. Although our group have previously showed
strong correlations between the MI area assessed by
echocardiogram and post mortem histological analysis
[14,16,17,29], the lack of histological data is a limitation
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of the present study. In addition, although we have not
performed biochemical analysis for markers of hyper-
trophy, remodeling and beta-adrenergic receptor signal-
ing, we did a screening of cardiovascular and autonomic
analyzes, providing important data related to the cardio-
protection mechanisms afforded by ET.

Conclusion
In summary, we have demonstrated that prior exercise
training was effective in aerobic capacity, left ventricular
morphology and function in rats undergoing myocardial
infarction. Furthermore, these cardioprotective effects were
associated with attenuated cardiac autonomic dysfunction
observed in trained rats. Although these cause-effect rela-
tionships can only be inferred, rather than confirmed, our
study suggests that positive adaptations of autonomic func-
tion by exercise training can play a vital role in preventing
changes associated with cardiovascular disease, particularly
in relation to MI. However, other systemic and local mech-
anisms cannot be ruled out. Thus, these findings encour-
age enhancing baroreflex sensitivity and cardiac autonomic
function as a therapeutic strategy for the prevention of car-
diac abnormalities triggered by myocardial ischemia.
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