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Abstract 

Background This study delves into the intricate landscape of atherosclerosis (AS), a chronic inflammatory disorder 
with significant implications for cardiovascular health. AS poses a considerable burden on global healthcare systems, 
elevating both mortality and morbidity rates. The pathological underpinnings of AS involve a marked metabolic 
disequilibrium, particularly within pyrimidine metabolism (PyM), a crucial enzymatic network central to nucleotide 
synthesis and degradation. While the therapeutic relevance of pyrimidine metabolism in diverse diseases is acknowl-
edged, the explicit role of pyrimidine metabolism genes (PyMGs) in the context of AS remains elusive. Utilizing bioin-
formatics methodologies, this investigation aims to reveal and substantiate PyMGs intricately linked with AS.

Methods A set of 41 candidate PyMGs was scrutinized through differential expression analysis. GSEA and GSVA were 
employed to illuminate potential biological pathways and functions associated with the identified PyMGs. Simulta-
neously, Lasso regression and SVM-RFE were utilized to distill core genes and assess the diagnostic potential of four 
quintessential PyMGs (CMPK1, CMPK2, NT5C2, RRM1) in discriminating AS. The relationship between key PyMGs 
and clinical presentations was also explored. Validation of the expression levels of the four PyMGs was performed 
using the GSE43292 and GSE9820 datasets.

Results This investigation identified four PyMGs, with NT5C2 and RRM1 emerging as key players, intricately linked 
to AS pathogenesis. Functional analysis underscored their critical involvement in metabolic processes, including 
pyrimidine-containing compound metabolism and nucleotide biosynthesis. Diagnostic evaluation of these PyMGs 
in distinguishing AS showcased promising results.

Conclusion In conclusion, this exploration has illuminated a constellation of four PyMGs with a potential nexus 
to AS pathogenesis. These findings unveil emerging biomarkers, paving the way for novel approaches to disease 
monitoring and progression, and providing new avenues for therapeutic intervention in the realm of atherosclerosis.
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Introduction
Coronary artery disease (CAD), a leading cause of global 
mortality, is projected to cause 23.4 million deaths by 
2030, up from 18 million in 2017 [1]. This alarming trend 
is partly attributed to diets high in fats and sugars but low 
in fiber, exacerbating AS prevalence [2]. AS, a chronic 
inflammatory arterial disease, commences with inflam-
mation in the arterial intima and is characterized by 
the formation of atherosclerotic plaques, driven by LDL 
invasion and retention, and the aggregation of inflam-
matory cells [2]. This process underpins the pathogen-
esis of CAD, leading to coronary obstruction, myocardial 
ischemia, and necrosis, thereby heightening the risk of 
ACS. Despite extensive research, the genomic regula-
tory mechanisms of AS remain elusive [3]. Metabolism, 
a complex network of biochemical reactions, is increas-
ingly recognized as a key player in the pathogenesis and 
progression of various diseases, including metabolic, 
oncological, and cardiovascular disorders [4]. Disrupted 
metabolic pathways are a hallmark of disease pathol-
ogy. Advances in metabolic research have shed light on 
the interplay between metabolic processes and disease 
development, identifying potential therapeutic targets 
and biomarkers [5]. Moreover, metabolism is critical in 
modulating immune responses and inflammatory condi-
tions. It shapes immune cell function, influencing their 
differentiation, activation, and efficacy [6]. Alterations 
in immune cell metabolism can lead to autoimmune 
disorders, sustained inflammatory states, and weakened 
defenses against pathogens [7]. This study endeavors to 
demystify the complex relationship between coronary 
artery disease, atherosclerosis, and metabolic dysfunc-
tion. By exploring the genomic regulatory complexities 
of atherosclerosis and the impact of metabolic pathways 
on disease progression, this research aims to open new 
avenues for therapeutic interventions and precision med-
icine in cardiovascular health [7].

Nutrient assimilation and metabolic flux are essen-
tial for the survival of all living organisms. In oncology, 
metabolic reprogramming is a critical factor, influenc-
ing tumor proliferation and survival. Recent research 
has revealed that oncogenic transformation imparts a 
unique metabolic signature to tumor cells, altering the 
tumor microenvironment (TME). The TME, compris-
ing various cell types within a complex extracellular 
matrix, often suffers from poor oxygen and nutrient 
distribution due to underdeveloped or abnormal vas-
culature. As research advances, examining immune 
infiltration in non-tumorigenic areas is becoming 
increasingly vital [8]. There is growing evidence that 
the immune response is closely connected to signifi-
cant metabolic changes in tissues, leading to nutri-
ent depletion, increased oxygen consumption, and the 

production of reactive nitrogen and oxygen species [8]. 
Additionally, various factors within the TME signifi-
cantly affect the proliferation and function of immune 
cells. This interplay suggests that metabolic interven-
tions could enhance the effectiveness of immuno-
therapeutic approaches in cancer. Consequently, the 
convergence of metabolism and immune modulation 
represents a promising avenue in the advancement of 
cancer immunotherapies [8].

Pyrimidine metabolism (PyM) orchestrates the syn-
thesis, catabolism, and utilization of essential pyrimi-
dine nucleobases, such as cytosine and uracil, integral to 
nucleic acid structure [9]. PyM’s significance extends to 
nucleic acid synthesis and broader energy metabolism. 
Biosynthetic and degradation pathways involve de novo 
and salvage mechanisms, crucial in rapidly dividing cells 
[10]. Disruptions in PyM lead to a spectrum of inherited 
disorders, including autoimmune inflammatory condi-
tions like AS. Contemporary studies reveal that miRNAs, 
like MiR-146a and miR-155, enhance AS proliferation 
by repressing genes inhibiting cellular proliferation [11]. 
TSHR-mediated modulation of miR-146a and miR-155 
may shed light on AS fibroproliferative pathology. In 
autoimmune pathologies, Madera-Salcedo et  al. [12]. 
demonstrate PPP2R2B (B55ß) dysregulation, induced by 
inflammation-driven hypermethylation, confers resist-
ance to cytokine withdrawal-induced apoptosis [13]. Zhu 
et  al. reveal UBE2T amplifies hepatocellular carcinoma 
progression, correlating with enhanced PyM [14]. This 
study aims to dissect PyMGs and their role in AS immu-
notherapy, exploring purinosome formation and glu-
tamine PyM pathways for potential therapeutic avenues. 
Despite advances, the impact of PyM on the immuno-
genic landscape and its role in governing immunothera-
peutic efficacy in AS remain unclear. This study seeks a 
holistic evaluation of PyMGs, unraveling their interplay 
with immunotherapy in AS, paving the way for ground-
breaking clinical innovations.

In advancing the frontier of AS research, our initia-
tive employs high-throughput transcriptome sequenc-
ing and integrates it with detailed clinical data, marking 
a transformative phase in the study of this cardiovascu-
lar pathology. This methodology is pivotal in dissecting 
the transcriptional and molecular complexities intrin-
sic to AS. Our bioinformatics examination of these data 
has provided pivotal insights, substantially enriching our 
understanding of AS’s pathophysiological mechanisms. 
Despite progress, the involvement of PyMGs in AS 
pathology remains largely uncharted. Our study is metic-
ulously tailored to bridge this research void, harnessing 
the extensive AS-related data available in the GEO. We 
aim to decode the roles and impacts of PyMGs within 
the pathogenetic framework of AS. Figure  1 concisely 
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illustrates our methodological approach and anticipated 
results, guiding through a thorough analytical process.

Materials and Methods
The methodologies proposed by Zi-Xuan Wu et  al. in 
2023 were employed in this study [15].

Raw Data
The GEO datasets GSE43292 and GSE9820 were uti-
lized in this study. The platform used was GPL6244 and 
GPL6255. GSE43292 served as the training group, while 
GSE9820 served as the test group (Table  1). MSigDB 
included 105 PyMGs (Table.S1).

Fig. 1 Framework

Table 1 The clinical characteristics of patients

GSE43292 GSE9820

Variables Number of samples Variables Number of samples

Gender Gender

Male/Female unknown Male/Female 64/89

Diagnosis Diagnosis

AS/Not-AS 32/32 AS/Not-AS 87/66

Tissue Tissue

Macroscopically intact tissue/Atheroma 
plaque

32/32 Macroscopically intact tissue/Atheroma 
plaque

unknown

Country France Netherlands
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Transcriptomic profiling and identification of Differentially 
Expressed Genes (DEGs)
The alignment and sorting of transcription data and 
human configuration files were meticulously executed 
using Perl, ensuring precision in acquiring mRNA 
gene expression data. Subsequent to data standardiza-
tion from GSE43292, differential expression analysis 
ensued, employing stringent criteria of FDR < 0.05 and 
|log2FC|≥ 1, facilitated by the limma package. Pearson’s 
correlation coefficient was judiciously applied for the 
identification of statistically significant and highly cor-
related genes within modules, employing the correlation 
analysis tool provided by the corrplot package.

Functional annotation and pathway analysis
Functional annotation and pathway exploration for the 
identified DEGs were conducted using GO and KEGG 
analyses. R software, in conjunction with clusterPro-
filer, org.Hs.eg.db, enrichplot, and ggplot2 packages, 
was employed to decipher the impact of differentially 
expressed PyMGs on Biological Processes (BP), Molecu-
lar Functions (MF), and Cellular Components (CC), uti-
lizing KEGG data.

Model construction and immune cell infiltration analysis
In this research, a trio of machine learning algorithms—
LASSO, Random Forest, and SVM-RFE —were adeptly 
utilized to identify key genetic markers. LASSO, known 
for its proficiency in dimension reduction, outperforms 
traditional regression analysis in handling high-dimen-
sional data. This algorithm was fine-tuned using a penalty 
parameter and validated through a tenfold cross-valida-
tion process implemented via the glmnet package. The 
study further incorporated the RFE technique from the 
Random Forest algorithm, a supervised machine learn-
ing approach, to rank genes associated with atheroscle-
rotic plaque progression and immune responses [16]. The 
effectiveness of this method was gauged through ten-fold 
cross-validation, pinpointing genes with a relative impor-
tance exceeding 0.25 as characteristic genes. SVM-RFE, 
distinguished for its ability to select relevant features 
while excluding redundant ones, proved more effective 
than linear discriminant analysis and the mean squared 
error method. This approach was similarly applied for 
feature selection, employing a ten-fold cross-validation 
strategys [17]. To evaluate the diagnostic accuracy of 
these methodologies, curves and the corresponding Area 
Under the Curve were used, providing a robust measure 
of the algorithms’ predictive capabilities in the context of 
genetic biomarker identification.

For the construction of predictive models, the glm-
net package facilitated Lasso regression, augmented 
by cross-validation to enhance accuracy and reliability. 

Additionally, the support vector machine recursive fea-
ture elimination (SVM-RFE) algorithm, utilizing the 
e1071 package, was employed to craft a sophisticated 
machine learning model. Support vector machines 
(SVMs), renowned for their robustness in generalized 
linear classification, were leveraged for binary classifi-
cation tasks. SVMs integrate the hinge loss function to 
assess empirical risk, and regularization terms confer 
sparsity and resilience, optimizing structural risk. Kernel 
methods were ingeniously applied to transcend linearity, 
establishing SVMs as exemplars in kernel learning tech-
niques. Model robustness was evaluated through cross-
validation, assessing error rates and predictive accuracy. 
The Lasso and SVM algorithms played a pivotal role 
in ranking the significance of feature genes. Decoding 
the composition of immune cells within samples was 
achieved using the CIBERSORT algorithm.

Interrogating functional perturbations: gene set 
enrichment and variation analysis
Gene Set Enrichment Analysis (GSEA) and Gene Set 
Variation Analysis (GSVA) played pivotal roles in eluci-
dating functional perturbations and pathway aberrations 
across diverse samples. Leveraging associated scores 
and visual representations, we scrutinized dynamic bio-
logical activities and pathways within discrete risk strata. 
Employing the R programming environment and a suite 
of packages, including limma, org.Hs.eg.db, clusterPro-
filer, and enrichplot, we delved into the impact of differ-
entially expressed PyMGs on BP, MF, and CC, along with 
their intricate pathway involvements.

Navigating the drug‑gene nexus for precision therapeutics
In the epoch of bioinformatics ascendancy, the quest for 
efficacious biomarkers for disease diagnosis has intensi-
fied. Beyond discovery, the imperative lies in the practi-
cal application of these biomarkers in clinical scenarios. 
Predictive analytics for drug responses, informed by 
these biomarkers, stands as a cornerstone for advancing 
prevention and treatment modalities for AS. Validated 
biomarkers serve as navigational beacons guiding tar-
geted therapeutic interventions. Precision in drug-gene 
interaction predictions is paramount, and in this study, 
we utilized the Drug-Gene Interaction database (DGIdb) 
(https:// dgidb. genome. wustl. edu/) to forecast potential 
drug interactions with our identified hub genes.

Unraveling the interplay of Non‑coding RNAs: miRNAs 
and lncRNAs
The regulatory landscape of genetic expression is intri-
cately shaped by non-coding RNA transcripts, includ-
ing microRNAs (miRNAs) and long non-coding RNAs 
(lncRNAs). MiRNAs finely modulate gene expression by 

https://dgidb.genome.wustl.edu/
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orchestrating mRNA degradation and translation, while 
lncRNAs, spanning around 200 nucleotides, govern an 
array of cellular physiological and biochemical pathways. 
Emerging research has unveiled a complex interplay 
between miRNAs and lncRNAs, featuring competitive 
binding dynamics among these molecules and other 
regulatory entities. The concept of competitive endog-
enous RNAs (ceRNAs) has emerged, wherein lncRNAs 
act as molecular sponges for miRNAs. Our study aims to 
decode specific miRNAs and lncRNAs sharing regulatory 
axes and developmental trajectories in AS, employing 
Perl software for this exploration.

Constructing the multi‑layered regulatory network: 
mRNA‑miRNA‑lncRNA interactions
Target gene data for common miRNAs and lncRNAs 
were sourced from empirically validated databases, 
including miRTarBase [18] and PrognoScan [19]. The 
regulatory network was meticulously constructed by 
mapping the intersections between the target genes of 
mRNA-miRNA-lncRNA and the genes implicated in AS. 
Visualization and analysis of this intricate network were 
facilitated using Cytoscape [20] software, offering a com-
prehensive view of the regulatory interactions at play.

Statistical analysis
To delineate the diagnostic precision of the proposed 
biomarker candidate genes in the context of the patho-
logical state, a comprehensive ROC analysis was executed 
utilizing ROCplotter. This approach focused on evalu-
ating the specificity and sensitivity of these biomarkers, 
with the AUC metric serving as the critical indicator of 
biomarker efficacy. Here, the AUC value is posited as a 

direct reflection of biomarker quality, adhering to the 
principle that higher values denote superior biomarker 
performance [21]. Further, to ascertain the statistical 
significance of variations in expression levels of the can-
didate genes under conditions with and without AS, the 
non-parametric Mann–Whitney test was employed. This 
test provided a robust framework for evaluating dispari-
ties in gene expression profiles pertinent to the AS con-
dition. Additionally, a Spearman correlation analysis 
was conducted. This analysis was pivotal in establishing 
a relationship between the log2-transformed expression 
values of the candidate genes and the log2-transformed 
expression values of canonical markers of AS [22]. Such 
a correlation study is instrumental in reinforcing the bio-
logical relevance of the candidate genes within the AS 
pathological framework, thereby enriching the validity 
of these biomarkers in the context of AS diagnosis and 
prognosis.

Results
Identification of DEGs and principal component analysis
Among the 41 examined PyMGs, several exhibited sig-
nificant differences in expression levels. Furthermore, 
gene clustering analysis revealed distinct clusters in the 
treatment and control groups. Notable PyMGs in the 
treatment group included TXNRD2, POLR3K, DCTPP1, 
CMPK2, NUDT2, DTYMK, DPYS, TYMP, ENTPD6, 
while the control group included NT5E, RRM1, CTPS2, 
ENPP1, CTPS1, NT5C3B, NT5C2, NME7, etc. (Fig. 2a). 
Correlation analysis was conducted among these PyMGs, 
and a correlation matrix was generated for visualization 
(Fig. 2b) (Table S2).

Fig. 2 Principal Component Analysis. a Analysis of difference. b Analysis of correlation
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Enrichment analysis of PyMGs
GO enrichment analysis identified 299 core target 
genes, encompassing BP, MF, and CC. The MF cat-
egory primarily involved nucleotidyltransferase activ-
ity (GO:0016779), DNA-directed 5’-3’ RNA polymerase 
activity (GO:0003899), 5’-3’ RNA polymerase activity 
(GO:0034062). The CC category was mainly associated 
with transferase complex, transferring phosphorus-con-
taining groups (GO:0061695), nuclear DNA-directed 
RNA polymerase complex (GO:0055029), DNA-directed 
RNA polymerase complex (GO:0000428). The BP cat-
egory included pyrimidine-containing compound meta-
bolic process (GO:0072527), nucleobase-containing 
small molecule biosynthetic process (GO:0034404), 
nucleotide biosynthetic process (GO:0009165). KEGG 
enrichment analysis revealed that the upregulated genes 
were primarily involved in RNA polymerase (hsa03020), 
Pyrimidine metabolism (hsa00240), hsa00230 (Purine 
metabolism) (Fig. 3 and Table S3a-b).

Model construction
In our study, we developed a robust gene signature 
by integrating LASSO (Least Absolute Shrinkage and 
Selection Operator) and Cox regression analyses, with 
optimization detailed in Fig.  4a-b. The model’s fidel-
ity was rigorously tested through Support Vector 
Machine—Recursive Feature Elimination (SVM-RFE), 
demonstrating an accuracy rate of 0.814, with an error 
margin of 0.186, as illustrated in Fig. 4c-d. A compara-
tive analysis between the four Pyrimidine Metabolism 
Genes (PyMGs) identified via LASSO and SVM-RFE 
exhibited significant concordance, thereby validat-
ing the integrity of our model (Fig.  4e). When applied 
specifically to the four hub genes—CMPK1, CMPK2, 
NT5C2, and RRM1—the model exhibited high preci-
sion, with Area Under Curve (AUC) values of 0.854, 
0.780, 0.750, and 0.808, respectively (Fig. 4f ). Remark-
ably, within the dataset GSE9820, our model achieved 
an AUC of 0.957 (95% CI 0.900–0.992), underpinning 

Fig. 3 For PyMGs, GO, and KEGG analyses were performed. a The GO circle illustrates the scatter map of the selected gene’s logFC. b The KEGG 
barplot and bubble illustrates the scatter map of the logFC of the indicated gene
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its accuracy and robust predictive capability (Fig.  4g) 
(Table 2 and S4). The performance metrics, particularly 
the AUC, as prominently displayed in Fig.  4, substan-
tiate the model’s precision. The AUC value of 0.957 
notably highlights this precision. It’s important to con-
sider that potential variations in AUC may result from 
genetic heterogeneity among individuals. However, it is 
crucial to note that the collective AUC values for the 
implicated genes consistently approximate or surpass 
the 0.7 threshold, indicative of a strong predictive per-
formance. This synthesis of results bolsters the credibil-
ity and robustness of our model, affirming its potential 
utility in predictive diagnostics within the context of 
PyMGs.

Gene set enrichment analysis
In this study, the AUC of each gene in the test group, 
the Rank ranking of each gene, and the results of the test 
group validation were observed. We found that NT5C2 
and RRM1 may be the most relevant genes. Through 
literature evaluation and analysis of hub gene sensitiv-
ity within the model, it was determined that NT5C2 and 
RRM1 may be the most relevant genes to AS. In terms 
of GO analysis, NT5C2 was found to be associated with 
BP leukocyte chemotaxis, BP positive regulation of leu-
kocyte cell cell adhesio, BP positive regulation of cell 
cell adhesion. On the other hand, RRM1 was primarily 
involved in the BP b cell receptor signaling pathway, BP 
antigen receptor mediated signaling pathway, BP leuko-
cyte mediated cytotoxicity (Fig.  5a). In KEGG analysis, 
NT5C2 was mainly associated with KEGG b cell recep-
tor signaling pathway, KEGG cytokine cytokine receptor 
interaction, KEGG chemokine signaling pathway, while 
RRM1 was involved in KEGG primary immunodefi-
ciency, KEGG oxidative phosphorylation, KEGG parkin-
sons disease (Fig. 5b) (Table S5).

Analysis of immune cells
The immune microenvironment plays a crucial role in the 
initiation and progression of AS. A vioplot was created 
to display the expression patterns of B cells naive, T cells 
CD8, NK cells activated, Monocytes, Dendritic cells rest-
ing, which were highly expressed in the control group. 
While, B cells memory, T cells CD4 memory activated, 
Macrophages M0 were highly expressed in the treatment 
group (Fig.  6a). Additionally, a correlation analysis was 

Fig. 4 The development of the PyMGs signature. a Regression of the 4 AS-related genes using LASSO. b Cross-validation is used in the LASSO 
regression to fine-tune parameter selection. c-d Accuracy and error of this model. e Venn. f AUC of 4 hub genes. g AUC of train group

Table 2 The characteristics of model

Label LASSO SVM‑RFE

Sensitivity 1.000000 0.916667

Specificity 0.692308 0.769231

Pos Pred Value 0.750000 0.785714

Neg Pred Value 1.000000 0.909091

Precision 0.750000 0.785714

Recall 1.000000 0.916667

F1 0.857143 0.846154

Prevalence 0.480000 0.480000

Detection Rate 0.480000 0.440000

Detection Prevalence 0.640000 0.560000

Balanced Accuracy 0.846154 0.842949
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performed to investigate the relationship between these 
genes and immune cells (Fig. 6b).

GSVA
In the GO analysis, NT5C2 was primarily associated with 
BP regulation of antigen processing and presentation of 
peptide antigen, MF icosanoid binding, BP t cell antigen 
processing and presentation, BP smooth muscle adapta-
tion, MF toll like receptor 4 binding. RRM1 was mainly 
involved in the MF cxcr3 chemokine receptor bind-
ing, BP l serine catabolic process, BP regulation of anti-
gen processing and presentation of peptide antigen, CC 
alpha beta t cell receptor complex, CC iga immunoglobu-
lin complex, CC immunoglobulin complex circulating 
(Fig. 7a). In terms of KEGG analysis, NT5C2 was mainly 
associated with prion diseases, vegf signaling pathway, 
fc gamma r mediated phagocytosis, acute myeloid leu-
kemia, maturity onset diabetes of the young. RRM1 was 
involved in parkinsons disease, glycosaminoglycan deg-
radation, acute myeloid leukemia, glycosaminoglycan 
biosynthesis keratan sulfate, primary immunodeficiency 
(Fig. 7b).

Drug‑gene interactions
Three drugs were predicted to interact with the hub 
genes, including gemcitabine, lamivudine, cisplatin, dida-
nosine, gemcitabine, mercaptopurine (Table S6) (Fig. 8).

Identification of common RNAs and construction 
of miRNA‑lncRNA shared genes network
A total of 123 miRNAs and 114 lncRNAs associated 
with AS were identified from three databases (Table S7a-
b). Table S7 shows the matching of these genes against 
the corresponding miRNA database. These databases 
include miRanda [23], miRDB [24], and TargetScan [25]. 
When the corresponding database matched the relevant 
miRNA, the score was marked as 1. It can be seen that 
when all three databases can be matched, it is 3 points. 
The miRNA was matched by spongeScan database [26] 
to obtain the corresponding lncRNA data. The miRNA-
lncRNA-gene network was constructed by intersecting 
these non-coding RNAs with the shared genes obtained 
through Lasso regression and SVM-RFE. The network 
consisted of 92 lncRNAs, 115 miRNAs, and some com-
mon genes, including the four hub genes (CMPK2, 

Fig. 5 GSEA of Analysis in NT5C2 and RRM1. a GO. b KEGG
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Fig. 6 Expression of Immune cells. a Expression of immune cells in different clusters. b Correlation between PyMGs and immune cells
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Fig. 7 GSVA of Analysis in NT5C2 and RRM1. a GO. b KEGG

Fig. 8 Drug-gene interactions. Note: Red circles are up-regulated genes, green hexagons are down-regulated genes, and blue squares are 
associated drugs
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CMPK1, NT5C2, and RRM1) (Fig. 9). In this method, a 
network is constructed by matching the relevant data sets 
and matching the mirnas with higher scores with related 
genes, etc., through the scoring file. This resulted in some 
less relevant ones being eliminated during the screening 
process.

Validation of hub genes and model
To enhance the confidence and prediction accuracy of 
the model, GSE105149 dataset was used for validation. 
The GSE105149 analysis further confirming their poten-
tial relevance to AS (Fig.  10a-b). The Boxplots depicted 
the residual expression patterns of these genes in AS 
(Fig. 10c-d). In this model, which positions four GlnMgs 

at the forefront, NT5C2 and RRM1 were hypothesized to 
exhibit significant disparities. Contrary to expectations, 
as delineated in the figure, these genes did not attain 
statistical significance. This outcome is likely attribut-
able to limitations in sample size and regional ethnic 
variations. Nonetheless, the uniformity of these results 
across independent datasets bolsters the reliability of 
these biomarkers, reinforcing their potential in elucidat-
ing the molecular framework of AS. This consistency, 
despite initial results, highlights the nuanced complex-
ity of AS’s molecular landscape and the importance of 
robust, diverse datasets in genetic research. The PyMGs’ 
diagnostic capacity in distinguishing AS from control 
samples revealed a satisfactory diagnostic value, with an 

Fig. 9 miRNAs-LncRNAs shared Genes Network. Note: Red circles are mrnas, blue quadrangles are miRNAs, and green triangles are lncRNAs
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AUC of RF: 0.877; SVM: 0.914; XGB: 0.883; GLM: 0.938 
(Fig.  10e). An AUC of 0.877 (95% CI 0.667–1.000) in 
GSE9820 (Fig. 10f ).

Discussions
Atherosclerosis, a covert architect of vascular pathol-
ogy, steadfastly remains a leading precursor to car-
diovascular morbidity and mortality. Within this 
paradigm, the need for advanced diagnostic approaches 
to effectively stratify atherosclerotic risk is pressing. 
The evolution of atherosclerotic plaques is a multi-
faceted process, bearing resemblance to the immune 
intricacies characteristic of oncological disorders. It is 
therefore critical to gain a profound understanding of 
the roles played by immune-associated genes in the 
development of these plaques. Mirroring the metabolic 
upheavals characteristic of cancer, where aberrant gly-
colysis serves as a hallmark of malignancy,metabolic 
markers have gained prominence [27]. Markers such as 
those involved in cysteine and nucleotide metabolism, 
alongside oncometabolites like 2-hydroxyglutarate, 
have shown promise in the diagnostic and therapeu-
tic arenas of glioma. In this milieu, gene expression 

regulation assumes a pivotal role [28]. Research cen-
tering on PyM has sought to elucidate the intricate ties 
between metabolic dysregulation and inherent genetic 
variances within the cancerous milieu [29]. Stud-
ies have identified heightened pyrimidine synthesis 
flux in cells harboring mutations in KRAS, PTEN, or 
p53—rendering them vulnerable to targeted synthetic 
lethality approaches [30]. Inhibition of the pyrimidine 
biosynthetic pathway thus stands as a potential novel 
therapeutic avenue for tumors harboring such gain-
of-function mutations [31]. The interplay between the 
pyrimidine pathway and other metabolic routes pro-
vides an expansive understanding of metabolic het-
erogeneity, paving the path for the development of 
individualized therapies. Contemporary advances in 
oncological research have redirected attention from the 
tumor per se to encompass a holistic grasp of non-can-
cerous biological processes [31]. From such a vantage 
point, the investigation into distinct PyM signatures 
during the progression of atherosclerosis harbors sig-
nificant potential. Probing the diverse PyM patterns 
along the continuum of atherosclerotic progression 
offers invaluable insights into the role of PyM in the 

Fig. 10 Hub gene and Model verification. a-b Hub genes were validated. c-d Residual expression patterns. e AUC of model. f AUC of GSE9820 
group
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pathogenesis of atherosclerosis and holds the key to 
unlocking novel targeted therapeutic strategies.

In this comprehensive study, we have elucidated a 
group of 41 DEGs intimately linked to glutamine metab-
olism in the context of AS. By integrating DEGs with 
advanced analytical techniques like Lasso regression and 
SVM-RFE, we identified four pivotal PyMGs—CMPK1, 
CMPK2, NT5C2, and RRM1. These genes emerged as 
significant, showing promising diagnostic potential, a 
conclusion reinforced through external dataset valida-
tion. This suggests their integral role in the etiology of 
AS. This research has elucidated the potential signifi-
cance of drug-gene interactions and non-coding RNA 
networks in highlighting the relevance of four marker 
genes associated with AS. Through our analysis, we iden-
tified seven key genes (CMPK2, CMPK1, NT5C2, and 
RRM1) that are intricately associated with the progres-
sion of atherosclerotic plaques and immune responses. 
These genes hold promise for predicting the advance-
ment of atherosclerotic plaques. Additionally, our study 
proposes a novel molecular classification that differ-
entiates between immune and non-immune subtypes 
within atherosclerotic plaques. This classification could 
have substantial implications in the realm of cardiovas-
cular diseases. Overall, our findings pave the way for the 
development of more precise and individualized cardio-
vascular immunotherapies, potentially revolutionizing 
treatment approaches in this field. Our review of the lit-
erature highlighted NT5C2 and RRM1 as key players in 
AS association. Further analysis of their biological func-
tions revealed their involvement in the metabolism of 
pyrimidine-containing compounds, the biosynthesis of 
nucleobase-containing small molecules, and nucleotide 
biosynthesis. These findings position PyMGs as cen-
tral to a range of biological pathways, likely influencing 
immune-related processes and thus significantly impact-
ing the pathophysiology of AS.

RRM1, integral to the rate-limiting enzyme in nucle-
otide synthesis, emerges as a prospective prognos-
tic biomarker for advanced non-small cell lung cancer 
(NSCLC). Its elevated expression is linked to reduced 
efficacy of certain chemotherapeutics, underscoring its 
clinical relevance. Numerous studies have highlighted 
the influence of RRM1 levels on NSCLC prognosis [32]. 
In a significant development, Reglero et  al. identified 
CRCD2 as an innovative small molecule inhibitor tar-
geting NT5C2 nucleotidase, exhibiting potent efficacy 
against common mutant forms implicated in leuke-
mia relapse, both in  vitro and in  vivo. Notably, CRCD2 
enhances the cytotoxicity of 6-MP in leukemias with wild 
type NT5C2, revealing NT5C2 S502 phosphorylation as 
a novel resistance mechanism to mercaptopurine [33]. 
Complementary research by Lai emphasizes CMPK2’s 

role in regulating DENV-induced cytokine release, mito-
chondrial oxidative stress, and mitochondrial DNA 
translocation. The study demonstrates that CMPK2 
depletion reduces DENV-induced Toll-like receptor 
(TLR)-9 activation, inflammasome pathway engage-
ment, and cell migration, albeit with increased viral pro-
liferation [34]. Similarly, Chen’s research in a spinal cord 
injury (SCI) model shows that CMPK2 influences NLRP3 
expression, which is crucial in inflammasome activation 
and subsequent inflammation post-SCI. Intriguingly, 
electroacupuncture reduces CMPK2 expression and 
NLRP3 activation, enhancing motor function recovery 
in SCI rats [35]. These studies collectively underline the 
importance of PyMGs, including NT5C2 and RRM1, in 
AS as examined in our research. Data from the GSE9820 
dataset further suggest PyM-related features as potential 
robust prognostic markers. However, the exploration into 
gene alterations linked to PyM is in its infancy, necessi-
tating more comprehensive research to fully grasp their 
clinical implications.

Atherosclerosis, a chronic inflammatory disorder with 
immune underpinnings, represents a perilous jour-
ney towards cardiovascular disaster, characterized by 
the relentless formation of arterial intimal plaques. This 
pathophysiological odyssey, rooted in early inflamma-
tion, culminates in the complex evolution and rupture of 
atherosclerotic plaques [36]. A diverse array of immune 
cells -including monocytes/macrophages, T lympho-
cytes, dendritic cells, and mast cells-plays a pivotal role 
in orchestrating atherosclerosis progression through 
their dynamic interactions. Within the arterial milieu, 
monocytes transform into macrophages, initiating lipid 
accumulation and foam cell formation, quintessential 
features of atherosclerosism [37]. CD4 + T cells, as key 
inflammatory players, exacerbate the inflammatory envi-
ronment and contribute to the array of pro-inflammatory 
cytokines. Dendritic cells, at the interface of innate and 
adaptive immunity, finely tune the immune response 
within the developing lesion [38]. Mast cells, on the other 
hand, release inflammatory mediators that heighten 
inflammation and promote plaque instability.

The intricate interplay among immune and vascu-
lar cells is governed by a complex network of cytokines, 
chemokines, and inflammatory signals. Pro-inflamma-
tory cytokines, such as IL-1β, IL-6, and TNF-α, serve 
as harbingers of endothelial activation and plaque pro-
gression [39]. Chemokines recruit immune cells to the 
inflammation site, intensifying its magnitude. Addition-
ally, the surveillance roles of Toll-like receptors (TLRs) 
and NOD-like receptors (NLRs), which detect pathogen-
associated and damage-associated molecular patterns, 
initiate the atherosclerotic inflammatory cascade [40]. 
Deciphering this immunological web has expanded our 
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understanding of atherosclerosis and revealed new thera-
peutic targets. Immunomodulatory strategies focusing 
on specific immune cell subsets or inflammatory path-
ways offer a revolutionary approach in preventing and 
stabilizing atherosclerotic plaques, potentially diminish-
ing cardiovascular events [41]. Building upon previous 
research, our study delves into the expression of PyMGs 
within the atherosclerosis immune milieu. Using vioplot 
visualization, we discerned the expression patterns of 
various immune cells. Naive B cells, CD8 T cells, acti-
vated NK cells, monocytes, and resting dendritic cells 
predominated in the control group. In contrast, memory 
B cells, activated memory CD4 T cells, and M0 mac-
rophages were notably expressed in the treatment group, 
indicating a shift in the immune landscape influenced by 
therapeutic intervention.

The emerging field of research exploring the complex 
relationship between AS and metabolic dynamics is gain-
ing momentum, particularly with the advancements in 
bioinformatics [42–44]. Notable contributions in this 
domain include Zemin Tian’s work on immunogenic cell 
death in endothelial cells, and Shuangyang Mo’s explora-
tion of molecular parallels between Non-Alcoholic Fatty 
Liver Disease (NAFLD) and AS. Additionally, Chi Ma’s 
predictive model, grounded in autophagy-related genes, 
offers promising avenues for diagnostic and therapeutic 
biomarkers. However, the association between purine 
metabolism and AS is still relatively uncharted, especially 
in terms of predictive models. Our study seeks to fill this 
void by employing an innovative methodology, leverag-
ing extensive PyM datasets from the GEO, particularly 
GSE43292, with further validation through GSE9820. By 
integrating GO, KEGG analyses, and GSEA, our find-
ings not only provide theoretical insights but also chart 
a course for future metabolic research and therapeu-
tic strategies in AS. Despite these advancements, our 
research acknowledges certain limitations, such as the 
necessity for additional in vivo and in vitro experiments 
to fully unravel the complexities of AS mechanisms. 
The prognostic potential of PyMGs in the context of AS 
opens up a vista of opportunities for future investigation 
and innovation, indicating a significant scope for advanc-
ing understanding and treatment strategies in this field.

Conclusions
The study of AS reveals a complex interplay of multiple 
elements, including a range of targets, signaling pathways, 
and regulatory mechanisms, with PyMGs such as CMPK1, 
CMPK2, NT5C2, and RRM1 at its core. Notably, NT5C2 
and RRM1 emerge as critical regulators within this net-
work. These genes are central to key metabolic processes, 

particularly in pyrimidine compound metabolism and 
nucleotide biosynthesis. The ability of NT5C2 and RRM1 
to either stimulate or inhibit these pathways underscores 
their role in AS pathogenesis, reflecting the disease’s 
metabolic flexibility. This insight into the dual functional-
ity of these genes not only deepens our understanding of 
AS’s molecular basis but also highlights the complex and 
dynamic nature of its pathobiology.
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