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Abstract 

Background Atherosclerosis(AS) poses a pressing challenge in contemporary medicine. Formononetin (FMN) plays 
a crucial role in its prevention and treatment. However, the detailed impact of FMN on the stability of atherosclerotic 
plaques and its underlying mechanisms remain to be elucidated.

Methods An intervention consisting of FMN was given along with a high-fat food regimen in the ApoE-/- mouse 
model. The investigation included the evaluation of the degree of atherosclerotic lesion, the main components 
of the plaque, lipid profiles, particular markers indicating M1/M2 macrophage phenotypes, the quantities of factors 
related to inflammation, the infiltration of macrophages, and the identification of markers linked to the α7nAChR/
JAK2/STAT3 axis effect molecules.

Results The evaluation of aortic morphology in ApoE-/-mice revealed that FMN significantly improved the plaque 
area, fibrous cap protrusion, lipid deposition, and structural alterations on the aortic surface, among other mark-
ers of atherosclerosis,and there is concentration dependence. Furthermore, the lipid content of mouse serum 
was assessed, and the results showed that the low-, medium-, and high-dosage FMN groups had significantly lower 
levels of LDL-C, ox-LDL, TC, and TG. The results of immunohistochemical staining indicated that the low-, medium-, 
and high-dose FMN therapy groups had enhanced CD206 expression and decreased expression of CD68 and iNOS. 
According to RT-qPCR data, FMN intervention has the potential to suppress the expression of iNOS, COX-2, miR-
155-5p, IL-6, and IL-1β mRNA, while promoting the expression of IL-10, SHIP1, and Arg-1 mRNA levels. However, 
the degree of inhibition varied among dosage groups. Western blot investigation of JAK/STAT signaling pathway 
proteins and cholinergic α7nAChR protein showed that p-JAK2 and p-STAT3 protein expression was suppressed at all 
dosages, whereas α7nAChR protein expression was enhanced.

Conclusions According to the aforementioned findings, FMN can reduce inflammation and atherosclerosis by influ-
encing macrophage polarization, blocking the JAK/STAT signaling pathway, and increasing α7nAChR expression.
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Background
Atherosclerosis is a widely prevalent chronic cardiovas-
cular disease characterized primarily by lipid deposition 
and chronic inflammatory responses within arterial walls. 
This condition leads to the formation of plaques, which 
can accumulate within the arteries, ultimately posing 
a threat to the normal functioning of the entire cardio-
vascular system [1]. With the continuous rise in cardio-
vascular diseases and their associated high disability and 
mortality rates, atherosclerosis has emerged as an urgent 
challenge in contemporary medical science [2, 3]. Macro 
phages play a pivotal role in the pathological process of 
atherosclerosis. They can polarize into two major sub-
types, namely, M1 and M2 [4]. M1 macrophages typically 
exhibit proinflammatory characteristics, releasing pro-
inflammatory cytokines such as tumor necrosis factor-
alpha (TNF-α) and interleukin-1 beta (IL-1β). In contrast, 
M2 macrophages display anti-inflammatory properties, 
secreting cytokines such as Fizz1, Arg-1, Ym1, and IL-10 
[5, 6]. Maintaining the balance between M1 and M2 
macrophages is crucial for regulating the inflammatory 
response [7]. Cytokines in the inflammatory response 
play a crucial role in arterial wall inflammation and may 
contribute to plaque instability. Therefore, modulating 
the inflammatory response is of paramount importance 
in the treatment of atherosclerosis [8].

The JAK/STAT signaling pathway is a signaling path-
way associated with inflammation [9]. Numerous studies 
have demonstrated its ability to enhance and prolong the 
proinflammatory phenotype of macrophages, leading to 
the secretion of a significant amount of proinflammatory 
cytokines, such as IL-6 and vascular cell adhesion mol-
ecule-1, thereby exacerbating atherosclerosis [10, 11]. 
Additionally, in the early twentieth century, research-
ers recognized the importance of neural mechanisms in 
regulating inflammation, particularly the vagus nerve, 
and the anti-inflammatory signaling of the vagus nerve 
is mediated by α7nAChR (α7 nicotinic acetylcholine 
receptor), meanwhile, α7nAChR is an important down-
stream effector of the JAK2/STAT3 signaling pathway 
[12]. These mechanisms can mitigate the inflammatory 
response within atherosclerotic plaques, simultaneously 
reducing blood pressure and lipid levels, closely associ-
ated with the development of atherosclerosis [13, 14].

In the field of atherosclerosis prevention and treat-
ment, traditional Chinese medicine has played an excep-
tionally significant role, given its minimal side effects 
and remarkable efficacy. Several active components 
have been isolated from various Chinese medicinal 
herbs, including Chai hu Soap-Saponin A, Ku Shen G, 
Mu Xi Cao Su, and β-Olive. Research has already estab-
lished their positive effects in the prevention and treat-
ment of atherosclerosis [15, 16]. Formononetin (FMN) 

[IUPAC:7-hydroxy-3-(4-methoxyphenyl) chromene 
4- one] is one of the primary flavonoid components 
extracted from plants [17]. In recent years, extensive 
research has been conducted on the pharmacological 
actions of FMN, revealing its roles not only in antitumor 
and neuroprotection but also in protecting the cardiovas-
cular system and diabetic cardiomyopathy. Some studies 
suggest that FMN plays a significant role in the preven-
tion and treatment of atherosclerosis [18, 19]. However, 
the impact of FMN on the stability of atherosclerosis and 
its underlying mechanisms have not yet been thoroughly 
elucidated.

This study employed an ApoE-/- gene knockout mouse 
model, subjected to a high-fat diet and treated with 
FMN. We assessed the extent of atherosclerosis dam-
age, the main components within plaques, lipid levels, 
macrophage M1/M2 phenotype-specific markers, lev-
els of inflammation-related factors, macrophage infil-
tration, and the molecular markers of the α7nAChR/
JAK2/STAT3 axis. The aim was to explore the mecha-
nism of action of FMN in combating atherosclerosis and 
its potential applications in atherosclerosis treatment. 
Additionally, this study emphasizes the potential medici-
nal value of natural compounds, laying a solid theoreti-
cal foundation for the use of FMN in the prevention and 
treatment of atherosclerosis.

Materials and methods
Reagents and animals
FMN (HY-N0183), simvastatin (Shanghai Yuanye Bio-
Technology Co., Ltd), TRIzol Reagent (CW0580S, 
CWBIO), miRNA extraction kit (CW0627S, CWBIO), 
ultrapure RNA extraction kit (CW0581M, CWBIO), ECL 
ultrasensitive luminescent liquid (Thermo Fisher), BCA 
protein quantification kit (Elabscience), PVDF membrane 
(IPVH00010, Millipore), rabbit anti-iNOS (18,985–1-AP, 
Proteintech), rabbit anti-CD206 (DF4149, Affinity), rab-
bit anti-CD68 (DF7518, Affinity), rabbit anti-α7nAchR 
(bs-1049R, Bioss), rabbit anti-p-JAK2 (AF3022, Affinity), 
rabbit anti-p-STAT3 (AF3293, Affinity), OCT embedding 
agent (4583, SAKURA), saturated Oil Red O staining 
solution (G1260, Solarbio), Masson’s trichrome staining 
solution (G1006, Servicebio), and hematoxylin staining 
solution (ZLI-9610, ZSGB-Bio) were used.

C57/6  J mice (male, 4  weeks old, License Number: 
SCXK (Su) 2018–0008, Jiangsu Ji cui Yao kang) and 
ApoE-/- mice (male, 4 weeks old, License Number: SCXK 
(Su) 2018–0008, Jiangsu Ji cui Yao kang) were housed in 
a specific pathogen-free (SPF) environment with a tem-
perature range of 20–26  °C and humidity maintained 
between 40 and 70%. The living environment for all mice 
was as follows: the temperature was 20–26 °C, humidity 
was 40%-70%, and free access to food and drinking water 
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was provided. An adaptive feeding period of 7 days was 
observed. All experiments were approved by the Insti-
tutional Animal Care and Use Committee of Traditional 
Chinese Medicine (Guiyang, China). All mice were anes-
thetized to death with pentobarbital sodium.

Inducing cerebral ischemia in mice and experimental 
group interventions
C57/6  J mice were housed in a specific pathogen-free 
(SPF) en vironment with a temperature range of 20–26 °C 
and humidity maintained between 40 and 70%. They had 
free access to food and water. After 7 days of acclimatiza-
tion, the animals were divided into experimental groups.

C57/6 J mice were allocated to the blank control group, 
while ApoE-/- mice were randomly assigned to the 
model group, model + positive drug group, model + low-
dose FMN group, model + medium-dose FMN group, 
and model + high-dose FMN group. C57/6  J mice were 
fed normally, whereas ApoE-/- mice were fed a high-fat 
diet. In the positive control group, after the acclimatiza-
tion period, simvastatin solution was administered by 
gavage at a daily dose of 5 mg/kg. In the high-dose FMN 
group, after the acclimatization period, FMN solution 
was administered by gavage at a daily dose of 60 mg/kg. 
In the medium-dose FMN group, after the acclimatiza-
tion period, FMN solution was administered by gavage 
at a daily dose of 30 mg/kg. In the low-dose FMN group, 
after the acclimatization period, FMN solution was 
administered by gavage at a daily dose of 15 mg/kg. Drug 
intervention continued for 8 weeks, with daily adminis-
trations. Eight weeks later, mice were anesthetized by 
intraperitoneal injection of sodium pentobarbital (60 mg/
kg), and the tissue samples were quickly moved and 
stored at -80℃. All animal experiments complied with 
the Guide for the Care and Use of Laboratory Animals 
(National Institutes of Health Publication No. 85 − 23, 
revised in 1996) and were reported following the Ani-
mal Research Report of In  Vivo Experiments (ARRIVE) 
guidelines.

Hematoxylin–eosin staining
Following paraffin embedding, sectioning, deparaffini-
zation, and hydration, carotid artery tissue paraffin sec-
tions were subjected to staining with hematoxylin for 
3–5 min. After rinsing with running water, differentiation 
was achieved using 1% hydrochloric acid alcohol. Sub-
sequently, a bluing solution was used for counterstain-
ing, followed by eosin staining for 3–5 min. The sections 
were then dehydrated, coverslipped, and observed under 
a microscope (BX43, Olympus). Lesion area were meas-
ured using Image J software.

Masson’s trichrome staining
Tissue samples were processed as follows: rinsed in run-
ning water, dehydrated in a graded ethanol series (70%, 
80%, 90%), and cleared in a mixture of absolute alcohol 
and xylene. After further xylene treatments and immer-
sion in xylene-paraffin mixtures, the samples were 
embedded in paraffin and sectioned. The sections under-
went deparaffinization, standard staining (hematoxylin, 
Masson’s blue, acid hematoxylin, and aniline blue), and 
dehydration in ethanol. Finally, they were mounted with 
high-quality medium for microscopic observation (BX43, 
OLYMPUS). Collagenvolume fraction were measured 
using Image J software.

Oil red O staining
The target tissue was surgically prepared and mounted 
on a sample holder with OCT embedding medium. After 
freezing until OCT solidified, the tissue sections were cut 
and thawed at room temperature. Sections were rinsed, 
fixed in 4% paraformaldehyde, and washed to remove 
OCT. Oil red O staining was performed for 10  min. 
Quick differentiation in 60% isopropanol and counter-
staining with hematoxylin. Sections were observed under 
a microscope (CX43, OLYMPUS). Plaque area were 
measured using Image J software.

Immunohistochemistry staining
Immunohistochemistry was employed to assess the 
expression levels of M1/M2 macrophage-specific mark-
ers (iNOS, CD206, CD68) in aortic tissue. Sections of 
mouse aortic plaque tissue were processed through bak-
ing, deparaffinization, and hydration, followed by antigen 
retrieval using citrate buffer. After blocking with 5% BSA 
to prevent nonspecific binding, the sections were incu-
bated with NF-κB p65 primary antibody (1:100) over-
night at 4  °C. Subsequently, they were incubated with 
goat anti-rabbit secondary antibody (1:100) labeled with 
horseradish peroxidase. DAB staining was performed, 
and counterstaining was performed with hematoxylin. 
After dehydration and clarification, the sections were 
mounted, and observations were made using a micro-
scope (CX43, OLYMPUS). Protrin relative expression 
were measured using Image J software.

Quantitative real‑time PCR
Total RNA from carotid artery tissues/cells was extracted 
using TRIzol reagent, and mRNA/miRNA was extracted 
using an RNA ultra-pure extraction kit/miRNA ultra-
pure extraction kit. The concentration and purity of 
mRNA were determined using a UV‒Vis spectropho-
tometer (OD260/OD280). cDNA was synthesized using 
a reverse transcription kit for RNA/miRNA. Fluorescent 



Page 4 of 11He et al. BMC Cardiovascular Disorders          (2024) 24:121 

quantitative PCR was performed using a fluorescent PCR 
instrument. The reaction steps were as follows: prede-
naturation at 95 °C for 10 min, denaturation at 95 °C for 
10 s, annealing at 58 °C for 30 s, and extension at 72 °C 
for 30 s for 40 cycles. β-actin was used as an internal ref-
erence, and the relative gene expression was calculated 
using the 2^-ΔΔCt method. The primer sequences are 
shown in Table 1.

Western blot detection
A certain amount of carotid artery tissue was taken, 
added to RIPA lysis buffer, and ground using a tissue 
grinder to extract total tissue protein (for cells: collect the 
cells, discard the culture medium, and extract total pro-
tein using RIPA lysis buffer). Centrifuge at 12,000  rpm 
at 4  °C for 10  min, collect the supernatant, and quanti-
tate the total protein using a BCA protein quantification 
kit. After denaturation of the protein samples, sodium 
dodecyl sulfate‒polyacrylamide gel electrophoresis 
(SDS‒PAGE) was performed for 1.5 h, followed by elec-
troblotting at a constant current of 300 mA for 1 h. The 
PVDF membrane (Millipore) was blocked with skim milk 
powder, and the primary antibody was incubated over-
night at 4  °C. The next day, the PVDF membrane was 
incubated with the secondary antibody at room tempera-
ture for 2  h, immersed in a chemiluminescent reagent, 
and placed in an ultrasensitive chemiluminescent imag-
ing system for visualization. The blots were cut prior to 
hybridization with antibodies, so there are no images 
showing full length membranes.

Biochemical analysis
Serum samples were collected and centrifuged at 1000 × g 
for 20  min, and the levels of TC (total cholesterol), TG 
(triglycerides), LDL-C (low-density lipoprotein choles-
terol), HDL-C (high-density lipoprotein cholesterol), 
and ox-LDL were measured using biochemical assay kits 
according to the kit instructions. The absorbance (OD) 

values for each well were determined at the respective 
wavelengths using an enzyme-linked immunosorbent 
assay (ELISA) reader.

Statistical analysis
Statistical analysis and graphing were performed using 
GraphPad Prism 8.0.1 software. All experiments were 
repeated three times, and quantitative results are 
expressed as the mean ± standard deviation (X ± S). 
One-way analysis of variance (ANOVA) was used for 
quantitative comparisons among multiple groups, with 
a significance level set at α = 0.05. A p value of less than 
0.05 was considered statistically significant.

Results
Histopathological changes in the carotid artery tissues 
of each group were observed through H&E, Masson, 
and Oil Red O staining
As shown in Fig. 1, through HE staining, the morphologi-
cal changes in aortic tissues of the various groups of mice 
were examined. In the control group, the aortic intimal 
structure remained intact, showing no signs of prolif-
eration or luminal narrowing. In contrast, the AS model 
group displayed a significantly thickened aortic intima 
with the formation of atherosclerotic plaques, and these 
plaques exhibited a substantial area. Comparatively, the 
degree of intimal proliferation in the mice was inversely 
correlated with the dosage of FMN, with a notable reduc-
tion in plaque size and luminal stenosis as the dosage of 
FMN increased, particularly notable in the high-dosage 
group.

Masson’s staining was employed to assess the fibrosis 
status of aortic plaques in all groups of mice. In the con-
trol group, the arterial intimal structure remained intact, 
and only minimal fibrosis was observed. Conversely, the 
model group exhibited a conspicuously thickened aortic 
intima with fibrous caps on the plaques, beneath which 
necrotic debris, foam cells, and inflammatory cells were 

Table 1 Quantitative real-time PCR Primer sequences

Primer Name (Mouse) Primer Sequence F (5’‑3’) Primer Sequence R (5’‑3’)

β-actin AGG GAA ATC GTG CGT GAC CAT ACC CAA GAA GGA AGG CT

iNOS CGT TCC TGG AGG TGC TTG AA TGG AAG CCA CTG ACA CTT CG

COX-2 CTG GGC CAT GGA GTG GAC TT CAC TCT GTT GTG CTC CCG AA

IL-1β GAA ATG CCA CCT TTT GAC AGTG TGG ATG CTC TCA TCA GGA CAG 

IL-6 TCC GGA GAG GAG ACT TCA CA TTG CCA TTG CAC AAC TCT TTTC 

miR-155-5p GCG CGT TAA TGC TAA TTG TGAT AGT GCA GGG TCC GAG GTA TT

IL-10 GTC ATC GAT TTC TTC CCT GTG ACT CAT GGC TTT GTA GAT GCCT 

Arg-1 TTG GGT GGA TGC TCA CAC TG GTA CAC GAT GTC TTT GGC AGA 

SHIP1 TGA GGG AGA AGC TCT ATG ACTTT GAA GGC TCC CAT TGC CTC ATAG 
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eviden. Similarly, relative to the AS model group, FMN 
administration at varying dosages ameliorated the fibro-
sis status of aortic plaques in mice, with the middle-dos-
age group demonstrating the best improvement.

Quantification of AS plaque formation was con-
ducted by Oil Red O staining at the root of the carotid 
artery to assess lipid deposition. In the control group, 
no intimal thickening was observed, and the number of 
stained plaques was minimal. In contrast, the AS model 
group displayed intimal thickening and a significant 
increase in the area of red-stained plaques compared to 
the control group. Furthermore, relative to the model 
group, FMN at the three administered dosages exhib-
ited favorable effects on plaque formation.

Biochemical analysis of lipid content changes in mice 
serum in different groups
As shown in Fig.  2, compared to the normal control 
group, the AS model group of mice exhibited a signifi-
cant increase in the levels of LDL-C, ox-LDL, TC, and 
TG in serum; When compared to the AS group, the 
low-, medium-, and high-dose FMN treatment groups 
of mice displayed significant decreases in serum levels 
of LDL-C, ox-LDL, TC, and TG; In comparison to the 
AS group, the positive drug group treated with simv-
astatin showed significant reductions in serum levels 
of ox-LDL,TC, and LDL-C, while TG levels showing a 
decrease without significant differences.

Fig. 1 Observation of histopathological changes in carotid artery tissues in all groups using HE, Masson, and Oil Red O staining. A, C, E 
Representative morphological images of H&E,Masson and Oil Red O staining (Magnification, × 40;Scale bar = 50 μm); B, D, F Quantitative 
examination of lesion area,collagenvolume fraction and plaque area (The data are presented as the mean ± SD, n = 3–6; * indicates P < 0.05 
compared to the CON group, # indicates P < 0.05 compared to the AS group)
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Immunohistochemical staining was used to observe 
the changes in the expression of CD68, CD206, and 
iNOS in carotid artery tissues of all groups.

As shown in Fig. 3, compared to the normal control 
group, the expression levels of CD68 and iNOS in the 
carotid artery tissues of the AS model group increased, 
while CD206 expression decreased; Compared to the 
AS model group, the groups treated with the posi-
tive drugs simvastatin and FMN at low-, medium-, 
and high-doses showed varying degrees of decrease in 
CD68 and iNOS expression and an increase in CD206 
expression in carotid artery tissues,with significant 
changes observed in the high-dose group.

Quantitative real‑time PCR was used to assess the changes 
in mRNA and miR‑155‑5p expression in carotid artery 
tissues among the different groups
As shown in Fig.  4, compared to the normal control 
group, the expression of iNOS, COX-2, IL-1β, IL-6, and 
miR-155-5p mRNA levels in the cervical aortic tissues of 
the AS model group were significantly increased. In con-
trast, the expression of IL-10, SHIP1, and Arg-1 mRNA 
levels significantly decreased; Compared to the AS model 
group, the simvastatin group showed significant reduc-
tions in the expression levels of iNOS, COX-2, IL-6, and 
miR-155-5p mRNA in the cervical aortic tissues, and 
there was also a decrease in IL-1β mRNA, although not 

Fig. 2 Changes in Lipid Content in Mouse Serum in Different Groups as Analyzed Biochemically (The data are presented as the mean ± SD, n = 3–6. 
* indicates P < 0.05 compared to the CON group, # indicates P < 0.05 compared to the AS group)
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statistically significant.While the expression of IL-10, 
SHIP1, and Arg-1 mRNA significantly increased; The 
low-dose FMN group exhibited significant reductions 
in iNOS, COX-2, and miR-155-5p mRNA expression in 
cervical aortic tissues, with decreases in IL-1β and IL-6 
mRNA levels but no significant differences when com-
pared to the AS model group,while the expression of 
IL-10, SHIP1, and Arg-1 mRNA increased, but without 
significance; The medium-dose FMN group displayed 
significant reductions in the expression of iNOS, COX-
2, IL-1β, and IL-6 mRNA levels in cervical aortic tis-
sues, with no significant changes in miR-155-5p mRNA 
expression when compared to the AS model, while 
the expression of IL-10, SHIP1, and Arg-1 mRNA lev-
els all increased, but only the change in Arg-1 mRNA 
expression was significant; Compared to the AS model 
group,the high-dose FMN group showed significant 

reductions in iNOS, IL-1β, IL-6, and miR-155-5p mRNA 
expression in cervical aortic tissues.Notably, the expres-
sion levels of IL-10, SHIP1, and Arg-1 mRNA expression 
all significantly increased.

Western blot analysis of protein expression changes 
in cervical aortic tissues in various groups
As shown in Fig.  5, compared to the normal con-
trol group, the AS model group exhibited a significant 
decrease in α7nAChR protein expression in cervical 
aortic tissues, along with significant increases in p-JAK2 
and p-STAT3 protein expression; In comparison to 
the AS model group, the positive control group treated 
with simvastatin exhibited a significant increase in 
α7nAChR protein expression and significant decreases 
in p-JAK2 and p-STAT3 protein expression in cervi-
cal aortic tissues; Compared to the AS model group, the 

Fig. 3 Immunohistochemical Staining to Observe the Expression Changes of CD68, CD206, and iNOS in Carotid Artery Tissues in Various Groups. 
A Representative morphological images of immunohistochemical staining(Magnification, × 40;Scale bar = 50 μm); B-D The changes of protein 
expression levels in CD68,CD206 and iNOS for each group (The data are presented as the mean ± SD, n = 3–6; * indicates P < 0.05 compared 
to the CON group, # indicates P < 0.05 compared to the AS group)
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low-dose FMN group displayed a significant decrease 
in p-JAK2 protein expression, with no significant differ-
ences in α7nAChR and p-STAT3 protein expression; In 
contrast, the medium-dose FMN group exhibited a sig-
nificant increase in α7nAChR protein expression, along 
with significant decreases in p-JAK2 and p-STAT3 pro-
tein expression when compared to the AS model group; 
Moreover, the high-dose FMN group demonstrated a 
significant increase in α7nAChR protein expression and 
significant.

Discussion
In recent years, extensive research has underscored 
inflammation as a central pathological mechanism in AS, 
closely intertwined with its development and prognosis 
[20]. During the course of AS progression, the differen-
tiation and phenotypic transformation of macrophages 
play a pivotal role in shaping the inflammatory microen-
vironment within arterial walls [21]. Antiplatelet medica-
tions and statins currently stand as the most commonly 
employed pharmaceutical agents in the clinical manage-
ment of atherosclerotic cardiovascular disease (ASCVD) 
[22]. However, the high cost and side effects associated 
with long-term medications currently available in the 
market and those in synthetic drug development pipe-
lines underscore the urgent need for viable alternatives. 
Traditional Chinese medicine (TCM) plays a crucial 
role in the prevention and treatment of cardiovascular 

diseases and is characterized by its multicomponent and 
multitarget therapeutic approach that can act simul-
taneously or synergistically to address disease pathol-
ogy. FMN, a natural flavonoid component, held a focal 
position in our research. We employed an ApoE-/- gene 
knockout mouse model and subjected them to a high-fat 
diet, followed by FMN intervention, to comprehensively 
investigate the mechanistic role of FMN in countering 
atherosclerosis and its potential applications in the thera-
peutic management of atherosclerosis.

In this study, various doses of FMN were administered 
to assess their impact on aortic morphology. The results 
revealed a significant reduction in atherosclerotic fibrous 
cap prominence, lipid deposition, plaque area, and struc-
tural alterations on the surface of the carotid artery in 
ApoE-/- mice following FMN intervention. Furthermore, 
the effectiveness of FMN became more pronounced with 
increasing dosage. Concurrently, we assessed changes 
in serum lipid content in mice. Notably, the FMN inter-
vention led to a significant reduction in LDL-C, ox-LDL, 
TC, and TG levels in the low-, medium-, and high-dose 
groups. These experimental findings provide compelling 
evidence for the anti-inflammatory and atherosclerosis-
mitigating properties of FMN.

In the context of atherosclerosis, macrophage polariza-
tion plays a crucial role [23]. CD68 and iNOS are estab-
lished markers for M1-type macrophages, while CD206 
is one of the markers for M2-type macrophages [24]. We 

Fig. 4 RTq-PCR Analysis of mRNA and miR-155-5p Expression Changes in Cervical Aortic Tissues in Various Groups (The data are presented 
as the mean ± SD, n = 3–6. * indicates P < 0.05 compared to the CON group, # indicates P < 0.05 compared to the AS group)
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employed immunohistochemical staining to observe the 
changes in the expression of CD68, CD206, and iNOS in 
the carotid artery tissues of different treatment groups. 
The results demonstrated that, in comparison to the AS 
model group, the low-, medium-, and high-dose FMN 
treatment groups exhibited varying degrees of reduced 
CD68 and iNOS expression, along with increased 
CD206 expression. These findings align with the trends 
observed in numerous previous studies [25–28], indicat-
ing a decrease in M1-type macrophages and an increase 
in M2-type macrophages. Subsequently, we conducted 
PCR analysis of relevant cytokines. The results further 
demonstrated that FMN intervention could inhibit the 
expression of iNOS, COX-2, miR-155-5p, IL-6, and IL-1β 
mRNA, while promoting the expression of IL-10, SHIP1, 
and Arg-1 mRNA. Previous experimental studies have 
confirmed that iNOS levels are elevated in atheroscle-
rosis models compared to control groups [29]. As our 
results showed, the protein and mRNA levels of iNOS 
increased in the model group, while FMN intervention 
significantly reduced iNOS levels. Additionally, a high-fat 

diet induces the production of IL-1β, whereas FMN 
reduces IL-1β production. Research indicates that iNOS 
serves as a crucial marker for M1-type macrophages. 
Furthermore, IL-1β represents an inflammatory cytokine 
secreted by M1 macrophages and is involved in the pro-
gression of atherosclerosis [30, 31]. As atherosclerosis 
develops, the number of M2 macrophages decreased, and 
they express cytokines such as Interleukin (IL) -10, which 
have been identified as anti-inflammatory and anti-ather-
osclerotic [23]. In summary, our research results suggest 
that FMN can inhibit macrophage polarization toward 
the M1 phenotype (iNOS), suppress the release of proin-
flammatory factors, such as IL-1β, and promote M2-type 
polarization, thereby reducing inflammation and alleviat-
ing atherosclerosis.

When considering pathways related to inflammation 
in atherosclerosis (AS), it becomes apparent that their 
complexity is evident, including the Janus kinase/signal 
transducer and activator of transcription (JAK/STAT) 
signaling pathway. Extensive research has clarified the 
critical role of JAK/STAT signaling pathway activation 

Fig. 5 Western Blot Analysis of Protein Expression Changes in Cervical Aortic Tissues in Different Groups (The data are presented as the mean ± SD, 
n = 3–6. * indicates P < 0.05 compared to the CON group, # indicates P < 0.05 compared to the AS group)
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in regulating atherosclerosis-related inflammation [32, 
33]. In the AS model group, proteins associated with 
the JAK/STAT signaling pathway were found to be acti-
vated [34], and our study’s results are consistent with 
this observation. Moreover, FMN intervention, whether 
at low-, medium-, or high-doses, effectively inhibited 
the expression of p-JAK2 and p-STAT3. Tang’s research 
suggests that inhibiting JAK/STAT signal transduction 
can alleviate atherosclerosis in ApoE-/- mice [35]. The 
results from a rabbit model of atherosclerosis similarly 
indicate that inhibiting JAK/STAT signal transduction 
can reduce atherosclerosis in ApoE-/- mice [36]. Our 
results show that FMN can also modulate atheroscle-
rotic inflammation by suppressing the JAK/STAT sign-
aling pathway. In addition to studying the JAK/STAT 
signaling pathway, we assessed the protein expression 
of the critical effector molecule α7nAChR in the cho-
linergic anti-inflammatory pathway. Research suggests 
that α7nAChR plays a crucial regulatory role in athero-
sclerosis [37]. However, in contrast to the suppression 
of p-JAK2 and p-STAT3 protein expression, different 
doses of FMN significantly increased the expression 
of α7nAChR compared to the AS model group. The 
results from Ulleryd’s study demonstrate that stimu-
lating α7 nicotinic acetylcholine receptors (α7nAChR) 
can inhibit atherosclerosis by regulating bone mar-
row cell immune responses [38], and certain tradi-
tional Chinese medicines or natural components can 
also activate α7nAchR signal transduction, exerting 
anti-inflammatory effects [39, 40]. Therefore, based on 
our experimental results, FMN can improve athero-
sclerotic inflammation by activating the expression of 
α7nAchRs.

Conclusion
The research findings indicate that FMN can modulate 
macrophage polarization, inhibit the JAK/STAT signal-
ing pathway, and promote the expression of α7nAChR, 
thereby reducing inflammation and ameliorating ath-
erosclerosis. Nevertheless, the precise mechanisms 
through which FMN stabilizes atherosclerosis-related 
pathways by regulating macrophage polarization, par-
ticularly within the context of cholinergic anti-inflam-
matory pathways centered on α7nAChR, require further 
investigation.
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