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Abstract 

Introduction This study evaluates the effectiveness of a combined regimen involving injectable hydrogels 
for the treatment of experimental myocardial infarction.

Patient concerns Myocardial infarction is an acute illness that negatively affects quality of life and increases mortal-
ity rates. Experimental models of myocardial infarction can aid in disease research by allowing for the development 
of therapies that effectively manage disease progression and promote tissue repair.

Diagnosis Experimental animal models of myocardial infarction were established using the ligation method 
on the anterior descending branch of the left coronary artery (LAD).

Interventions The efficacy of intracardiac injection of hydrogels, combined with cells, drugs, cytokines, extracel-
lular vesicles, or nucleic acid therapies, was evaluated to assess the functional and morphological improvements 
in the post-infarction heart achieved through the combined hydrogel regimen.

Outcomes A literature review was conducted using PubMed, Web of Science, Scopus, and Cochrane databases. 
A total of 83 papers, including studies on 1332 experimental animals (rats, mice, rabbits, sheep, and pigs), were 
included in the meta-analysis based on the inclusion and exclusion criteria.

The overall effect size observed in the group receiving combined hydrogel therapy, compared to the group receiving 
hydrogel treatment alone, resulted in an ejection fraction (EF) improvement of 8.87% [95% confidence interval (CI): 
7.53, 10.21] and a fractional shortening (FS) improvement of 6.31% [95% CI: 5.94, 6.67] in rat models, while in mice 
models, the improvements were 16.45% [95% CI: 11.29, 21.61] for EF and 5.68% [95% CI: 5.15, 6.22] for FS.

The most significant improvements in EF (rats: MD = 9.63% [95% CI: 4.02, 15.23]; mice: MD = 23.93% [95% CI: 17.52, 
30.84]) and FS (rats: MD = 8.55% [95% CI: 2.54, 14.56]; mice: MD = 5.68% [95% CI: 5.15, 6.22]) were observed when extra-
cellular vesicle therapy was used. Although there have been significant results in large animal experiments, the num-
ber of studies conducted in this area is limited.
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Conclusion The present study demonstrates that combining hydrogel with other therapies effectively improves 
heart function and morphology. Further preclinical research using large animal models is necessary for additional 
study and validation.

Keywords Hydrogel, Myocardial infarction, Combination therapy

Graphical abstract

Introduction
Myocardial infarction, resulting from sudden ischemia 
and cell damage in the myocardial tissue, leads to irre-
versible cardiac impairment [1]. The recovery phase 
after injury involves both acute and chronic inflamma-
tion, which, coupled with increased cardiac load due 
to diminished heart function, exacerbates heart tissue 
damage. This detrimental cycle, known as “injury - 
increased cardiac load - heightened injury,” ultimately 
progresses to heart failure [2]. Although treatments 
for myocardial infarction include drug therapy, surgi-
cal device implantation, and organ transplantation, 
drug therapy is the most accessible option. Its goal is to 
decelerate the progression of cardiac injury by reducing 
the cardiac load. However, its effectiveness is limited 

and often accompanied by systemic toxicity and subop-
timal drug utilization, which undermine the potential 
benefits of many clinical agents. Furthermore, myo-
cardial infarction remains a significant cause of global 
morbidity and mortality [3].

Bioactive scaffolds, combined with bioactive drugs or 
cells to facilitate cellular attachments, have gained atten-
tion for their potential to promote tissue repair follow-
ing myocardial infarction and reverse heart damage [4]. 
Currently, bioactive scaffolds take the form of hydro-
gels, patches, and nanoparticles [5]. Hydrogels, which 
are hydrophilic polymeric three-dimensional networks 
[6], possess suitable mechanical properties, moistur-
izing capabilities, biocompatibility, biodegradability, 
and biomimetic characteristics, all of which are crucial 
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for sustained drug delivery and tissue regeneration [7]. 
Despite these advantages, hydrogels as biomaterials 
have a relative deficiency in bioactivity [8]. However, by 
incorporating various bioactive drugs, cells, and cellular 
appendages, hydrogels can exhibit anti-inflammatory, 
anti-apoptotic, and tissue repair capabilities. Targeted 
injections into the area of myocardial infarction can 
ensure the prolonged release of therapeutic agents, stabi-
lizing therapeutic outcomes and improving prognosis [9].

Injectable hydrogel combination therapies for myocar-
dial infarction are extensively investigated in preclinical 
studies. The surveyed literature includes investigations 
on cellular therapies, cytokine therapies, pharmaco-
therapies, extracellular vesicular therapies, and nucleic 
acid therapies. Additionally, there is an exploration of 
the combined use of these therapies in a multitherapy 
approach.

Although there have been numerous preclinical studies, 
clinical investigations on hydrogel-based treatments for 
myocardial infarction remain scarce [10, 11]. However, 
there has been a particular focus on hydrogel combined 
with stem cell therapies. Building upon previous system-
atic review and meta-analysis literature, our study delves 
deeper into hydrogel-based therapeutic approaches [12]. 
We aimed to analyze the effects of combining hydrogel 
with various therapies on cardiac function and morphol-
ogy following myocardial infarction. This analysis pro-
vides valuable insights for future research and supports 
the clinical application of hydrogel combination therapy.

Materials and methods
Protocols and registration
This meta-analysis adhered to the Preferred Report-
ing Items for Systematic Evaluation and Meta-Analysis 
(PRISMA) guidelines (Supplementary Table  I). The 
review protocol was registered on PROSPERO (CRD42 
02340 1702).

Search strategy and data sources
For this meta-analysis, relevant research literature was 
sourced from PubMed (National Library of Medicine, 
2021/03/01), Web of Science (via Clarivate Analytics), 
Scopus (via Elsevier 1788–2021/03/01), and Cochrane 
Central Register of Controlled Trials (via The Cochrane 
Library, 2021/03/01). The search strategy for PubMed is 
presented in Supplementary Table II.

Study eligibility
Two independent evaluators (H.G. and T.Y.) initially 
assessed the titles and abstracts of the literature against 
the inclusion and exclusion criteria (Supplementary 
Table III). Afterward, both evaluators conducted a com-
prehensive full-text review. This review focused on the 

outcomes of incorporating injectable hydrogels with 
various therapies (cellular therapy, pharmacotherapy, 
cytokine therapy, extracellular vesicular therapy, nucleic 
acid therapy, and polypharmacy) in animal models of 
myocardial infarction induced by LAD ligation, with the 
goal of evaluating improvements in cardiac function and 
morphology following treatment. To ensure the consist-
ency of study protocols, we required a minimum follow-
up duration exceeding 1 week in the included studies [12, 
13]. The infarct model was precisely defined as an animal 
model established using left anterior descending branch 
ligation, providing reliable and consistent results. Stud-
ies reporting immunogenic reactions or solely involving 
hydrogel injection without other therapies were excluded. 
There were no language or publication date restrictions 
in the literature inclusion criteria.

The primary outcome indicators in this study include 
left ventricular ejection fraction and fractional short-
ening. To be included in the literature review, the stud-
ies must present at least one of these primary outcome 
measures. Additionally, the secondary outcome indi-
cators encompass left ventricular end-systolic volume 
(ESV), end-diastolic volume (EDV), end-systolic diame-
ter (ESD), end-diastolic diameter (EDD), infarct size, and 
anterior wall thickness, covering both cardiac functional 
and morphological parameters. In cases where the nec-
essary data were missing in the literature but evidence 
suggested that the primary outcome measures were col-
lected, we contacted the respective authors via email. 
They were given a two-week period from the date of the 
email to provide the required information.

Data extraction
The relevant data for this analysis were extracted using a 
standardized approach. This included gathering informa-
tion on the sample size of the experimental animals and 
measuring the following parameters: baseline, hydrogel 
group, and combined protocol group for ejection frac-
tion; baseline, hydrogel alone, and combined protocol 
group for fractional shortening; hydrogel alone and com-
bined protocol group for left ventricular end-systolic 
diameter, left ventricular end-diastolic diameter, left 
ventricular end-systolic volume, left ventricular end-
diastolic volume, infarct area, and anterior ventricular 
wall thickness. When data appeared only in graphical 
format, manual extraction was performed using Image J 
software. To ensure data precision, both SS. Q and JL. Y 
independently conducted the extraction. In cases where 
discrepancies arose in the extraction outcomes, a sepa-
rate re-measurement was performed to maintain data 
accuracy.

The literature data were extracted in the format of 
mean and standard deviation. In cases where the mean 

https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=401702
https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=401702
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standard deviation was not provided, conversion was 
performed using standard errors and confidence inter-
vals, following the guidelines of the Cochrane Collabora-
tion Network.

The quality of articles was evaluated using the Hey-
land Methodological Quality Score (MQS) [14]. This 
score, which could reach a maximum of 18 points, was 
distributed among criteria such as randomization, analy-
sis, blinding, selection, group comparability, degree of 
follow-up, treatment regimen, combined interventions, 
and outcome reporting, with each criterion receiving 2 
points.

The risk of bias was assessed using SYRCLE’s Risk of 
Bias in Animal Testing tool [15]. The assessed elements 
included sequence generation, implementation, detec-
tion, attrition, and reporting bias. If no data were avail-
able, an “unclear” designation was assigned. A “high risk” 
designation was given when the methodology potentially 
compromised the accuracy of the results, and a “low risk” 
designation was assigned when the methodology was 
deemed not to influence the outcomes.

Statistical analysis
The analysis focused on changes in baseline values for 
the hydrogel injection and hydrogel combination treat-
ment groups following myocardial infarction, particularly 
investigating left ventricular functional and morphologi-
cal outcomes. The data were presented as mean ± stand-
ard deviation (SD). In cases where only mean and 
standard error were provided, we converted the stand-
ard error to standard deviation using the sample size. If 
a study included multiple intervention or control groups, 
we combined relevant outcome indicator groups, fol-
lowing established literature methodologies to minimize 
analysis errors [16]. The pooled analysis was conducted 
using the inverse variance method and a random effects 
model in the data software. A 95% confidence interval 
was adopted, with significance set at P < 0.05.

The forest plots presented the relative treatment 
effects and their 95% confidence intervals (CIs) for each 
outcome indicator across individual studies, different 
combination therapy types, and the overall random-
effects meta-analysis for each parameter investigated. To 
account for study heterogeneity, the analyses were strati-
fied based on animal size. The initial data analysis was 
performed using Review Manager (RevMan) 5.3 (Nor-
dic Cochrane Centre in collaboration with the Cochrane 
Collaboration in Copenhagen, Denmark).

In the priori subgroup analysis, we examined various 
variables, including combination therapy (encompass-
ing multitherapy or monotherapy), subtype of hydrogel 

source, sex of the animals, intervals post-MI for both 
follow-up and treatment, Methodological Quality Score 
(MQS), general subtype of the animals, and specifically 
murine small animal subtype. For continuous variables 
such as cell dose, duration, and MQS, dichotomous sub-
group analyses were conducted using the median value 
obtained from all studies included in the meta-analysis. 
Meta-regression analyses, employing STATA MP soft-
ware v17 (StataCorp in College Station), were carried 
out when the study count reached or exceeded three, 
with a significance threshold of P < 0.05, to determine the 
impact of subgroup variations.

The heterogeneity among the included studies was 
evaluated using the Cochran Q statistic, with statistical 
significance determined at P < 0.10. The interpretation of 
the  I2 values was as follows:  I2 < 50%, indicating moder-
ate heterogeneity; 50% ≤  I2 ≤ 75%, indicating substantial 
heterogeneity;  I2 > 75%, indicating considerable hetero-
geneity. Further sensitivity analyses were performed to 
investigate potential sources of heterogeneity by system-
atically excluding individual trials and utilizing different 
effect models (STATA MP v17).

Publication bias was assessed through a combination 
of visual examination of funnel plot results and statisti-
cal tests, including Begg’s and Egger’s tests, with P < 0.05 
considered as evidence of a small study effect. To meet 
standard literature requirements, at least 9 studies were 
included in the assessment of publication bias [17].

Results
Search results
The PRISMA review flowchart is depicted in Fig. 1. Ini-
tially, the search of PubMed, Web of Science, Scopus, 
and Cochrane databases resulted in 5230 relevant arti-
cles. After screening the titles, 3345 articles were deemed 
irrelevant and discarded. Duplicates were eliminated 
in the remaining 1885 articles that underwent title and 
abstract review, leaving 352 articles. After evaluating the 
full text of these 352 articles, 269 were excluded as they 
did not meet the inclusion and exclusion criteria. As a 
result, 83 articles were deemed suitable for analysis.

Study characteristic
Table 1 displays the characteristics of the included stud-
ies. The meta-analysis primarily focused on murine small 
animal models (N = 73; 88%), with rats (N = 54; 65.1%) 
and mice (N = 19; 22.9%) being the most prevalent. 
Other animal models consisted of rabbits (N = 3; 3.6%), 
sheep (N = 2; 2.4%), and pigs (N = 6; 7.2%). Notably, one 
study utilized both rat and sheep models. Among the 
selected studies, hydrogels fell into two categories: those 
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of natural origin (N = 44; 53%) and chemically synthe-
sized ones (N = 39; 47%). Hydrogels derived from natu-
ral material backbones were classified as natural origin. 
Combination therapies were predominantly represented 
by monotherapy (N = 62; 74.7%) and polytherapy (N = 21; 
25.3%), each further categorized based on variations in 
therapeutic effects. Monotherapy included cell therapy 
(N = 32; 38.6%), cytokine therapy (N = 14; 16.9%), drug 
therapy (N = 10; 12%), extracellular vesicle therapy (N = 4; 
4.8%), and nucleic acid therapy (N = 2; 2.4%). Most stud-
ies utilized male animal models (N = 68; 81.9%), while 
12 studies (14.5%) incorporated female models. All ani-
mal models underwent the left coronary artery ligation 
method to induce myocardial infarction, ensuring con-
sistent and reliable results. The majority of the animal 
studies had a 4-week follow-up period after intracar-
diac injection of the therapeutic hydrogel, followed by 
autopsy (N = 65; 78.3%). In larger animals such as sheep 
and pigs, the typical follow-up period was extended to 
8 weeks, with the longest study having a follow-up period 
of 52 weeks. In 73 studies (88%), the hydrogel injection 
occurred immediately after myocardial infarction mod-
eling. The funding sources varied, with 58 studies (69.9%) 
receiving joint funding from institutions and companies, 
19 studies (22.9%) solely funded by institutions, and 6 

studies (7.2%) solely funded by companies. One study 
(1.1%) did not report its funding source. Geographically, 
the majority of the studies were based in China (46) and 
the United States (17). Other contributions included 
Canada (4), Taiwan, China (3), Iran (2), Japan (2), Korea 
(2), and Singapore (2), with Denmark, France, Germany, 
and Italy each having contributed one study.

Quality and risk of Bias assessment
In assessing the quality of the literature included, a score 
of ≥11 was considered as indicative of high quality, as 
determined by the MQS analysis (Supplement Table  4). 
Out of the literature evaluated, 66 articles (69.5%) met 
the criteria for high quality. Additionally, only 25 articles 
(25.8%) explicitly stated the adoption of a blinded analy-
sis when assessing outcome indicators.

The analysis of the risk of bias plot (Supplement Fig-
ure  1) revealed a high risk of bias among the literature 
included. Only 30 trials (36.1%) maintained blinding 
throughout the outcome measurement process. Most 
trials did not provide details of a blinding protocol or 
implement blinding in relation to the animal housing 
environment and group allocation, indicating a significant 
risk of bias. None of the trials were excluded from the pri-
mary analysis due to concerns regarding quality or bias.

Fig. 1 Flowchart of the review process for the meta-analysis
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Effect of injectable hydrogel combination therapy 
on cardiac function
Effects in small animal models
The use of injectable hydrogel combination therapy 
resulted in significant improvements in EF (Fig.  2a, b). 
For rats, the mean difference (MD) was 8.87% [95% con-
fidence interval (CI): 7.53, 10.21], and for mice, the MD 
was 16.45% [95% CI: 11.29, 21.61]. Similarly, FS (Fig. 2c, 
d) also showed improvement with the use of injectable 
hydrogel combination therapy. For rats, the MD was 
6.31% [95% CI: 5.94, 6.67], and for mice, the MD was 

5.68% [95% CI: 5.15, 6.22]. These improvements were 
significantly greater than those observed with hydrogels 
alone. Among the various therapies, cell therapy had the 
most trials and demonstrated significant enhancements 
in both EF and FS. For rats, the MD was 8.02% [95% CI: 
5.28, 10.77] for EF and 7.99% [95% CI: 7.47, 8.50] for FS. 
For mice, the MD was 16.09% [95% CI: 9.35, 22.82] for EF 
and 5.42% [95% CI: 4.87, 5.96] for FS. Extracellular vesi-
cle therapy also showed significant improvements in EF 
and FS. For rats, the MD was 9.63% [95% CI: 4.02, 15.23] 
for EF and 8.55% [95% CI: 2.54, 14.56] for FS. For mice, 

Fig. 2 Forest plots of all trials investigating the effect of injectable hydrogel combination therapy on ejection fraction and fractional shortening 
outcomes in myocardial infarction treatment outcome studies (a. Rats EF, b. Mice EF, c. Rats FS, d. Mice FS). Data are expressed as weighted mean 
differences with 95% CIs, using generic inverse-variance random-effects models. Between-studies heterogeneity was tested by using the Cochran Q 
statistic (chi-square) at a significance level of P < 0.05. Reference numbers for each study can be found in Table 1 and list of references
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the MD was 23.93% [95% CI: 17.52, 30.84] for EF and 
5.68% [95% CI: 5.15, 6.22] for FS. Similar improvements 
in cardiac function were observed for cytokine therapy 
and drug therapy. For EF, the MD for rats was 9.03% [95% 
CI: 7.18, 10.87], and for mice was 20.30% [95% CI: 15.78, 
24.82]. For FS, the MD for rats was 5.26% [95% CI: 4.29, 
6.23], and for mice was 5.13% [95% CI: 4.43, 5.82]. Only 
a single study using nucleic acids therapy measured FS 
as an endpoint. Substantial heterogeneity was observed 
between studies for both EF (rats:  I2 = 75%, p < 0.0001; 
mice:  I2 = 96%, p < 0.0001) and FS (rats:  I2 = 96%, 
p < 0.0001; mice:  I2 = 97%, p < 0.0001). Systematic removal 
of individual studies did not significantly alter the hetero-
geneity for either EF or FS. (Supplementary Figure 4a, b).

Regarding the secondary outcomes, the analysis showed 
significant improvements in ESV for rats (MD = − 0.03 mL 
[95% CI: − 0.05, − 0.02]) and mice (MD = − 0.09 mL 
[95% CI: − 0.21, 0.03]). EDV also improved for rats 
(MD = − 0.03 mL [95% CI: − 0.04, − 0.02]). ESD exhib-
ited improvements for rats (MD = − 0.84 mm [95% CI: 
− 1.16, − 0.53]) and mice (MD = − 1.23 mm [95% CI: 
− 2.14, − 0.32]). Similarly, EDD demonstrated improve-
ments for rats (MD = − 0.66 mm [95% CI: − 0.82, − 0.51]) 
and mice (MD = − 1.13 mm [95% CI: − 3.04, 0.79]). The 
infarct size also showed positive outcomes with hydro-
gel combination therapy for rats (MD = − 9.90% [95% 
CI: − 11.84, − 7.95]) and mice (MD = − 7.64% [95% CI: 
− 13.67, − 1.62]). Furthermore, wall thickness increased 
for rats (MD = 0.27 mm [95% CI: 0.12, 0.42]) and mice 
(MD = 0.07 mm [95% CI: 0.01, 0.12]). These consistent 
findings indicate the superior treatment outcomes of 
hydrogel combination therapy compared to sole hydrogel 
injection (Supplementary Figure  2). Sensitivity analysis 
of secondary outcome measures also produced relatively 
robust results. (Supplementary Figure 4c-h).

In addition, multitherapy yielded significant improve-
ments in EF for rats (MD = 12.53% [95% CI: 7.85, 17.21]) 
and mice (MD = 10.59% [95% CI: 4.32, 16.86]). FS also 
showed notable improvements for rats (MD = 7.87% 
[95% CI: 7.00, 8.74]) and mice (MD = 5.88% [95% CI: 
4.90, 6.86]). ESD demonstrated reductions for rats 
(MD = − 1.47 mm [95% CI: − 2.14, − 0.80]) and mice 
(MD = − 0.18 mm [95% CI: − 0.66, − 0.30]). Similarly, 
EDD exhibited reductions for rats (MD = − 1.26 mm [95% 
CI: − 2.51, 0.00]) and mice (MD = − 0.26 mm [95% CI: 
− 0.46, − 0.07]). Although EDV showed minimal change 
for rats (MD = − 0.07 mL [95% CI: − 0.18, 0.03]), ESV 
demonstrated a slight decrease (MD = − 0.07 mL [95% CI: 
− 0.11, − 0.03]). Infarct size also decreased significantly 
for rats (MD = − 13.59% [95% CI: − 19.82, − 7.36]) and 
mice (MD = − 13.44% [95% CI: − 21.66, − 5.22]). Lastly, 
wall thickness increased for rats (MD = 0.63 mm [95% CI: 
0.38, 0.87]) (Supplementary Figure 3).

Effects in non‑ small animal models
In non-murine studies, the classification and analysis of 
animal types showed a significant improvement in EF, 
with an MD of 8.49% [95% CI: 7.46, 9.53]. Among the ani-
mal models, the pig model, which had a large sample size, 
demonstrated the most substantial effect, with an MD of 
9.09% [95% CI: 7.89, 10.29]. The sheep (MD = 6.36% [95% 
CI: 3.19, 9.53]) and rabbit (MD = 7.07% [95% CI: 4.40, 
9.74]) models also exhibited significant improvements 
(Fig. 3). However, secondary outcomes such as FS, ESV, 
EDV, ESD, EDD, infarct area, and ventricular wall thick-
ness were either not reported or poorly represented, pre-
venting correlation analysis (Tab. 1).

Subgroup analysis
This subgroup analysis focused primarily on rat and 
mouse animal models. Subgroup analysis of combina-
tion therapy revealed that extracellular vesicular therapy 
had the most prominent therapeutic effect, But the larger 
confidence intervals require more experiments to further 
validate the actual effect. The second is multitherapy, 
because it involves many variables, the results are diffi-
cult to explain, so it is not included in the main analysis, 
but it still provides a larger sample size and robust treat-
ment effect. Analyzing follow-up durations highlighted 
that a 4-week span (P < 0.005) yielded the most optimal 
overall impact, underscoring the significance of follow-
up time on outcome indicators, no effect modifications 
were seen for sex, MQS, animal size, or hydrogels sub-
type for EF (Fig. 4).

Continuous and subgroup meta-regression analyses 
demonstrated a significant effect for longer follow-up 
duration and time of treatment on reducing EF and FS 
(Fig. 4, Supplement Table 5a-b). For secondary outcomes, 
continuous meta-regression analyses demonstrated no 
effect of dose on either ESV, EDV, ESD, EDD, infarct size, 
or wall thickness. (Supplement Table 5c-h).

In subgroup meta-regression analyses comparing rats 
and mice, we found that the rat correlation studies (56 
articles 65%) had more stable confidence intervals than 
the mouse correlation studies (17 articles 20%). For sec-
ondary outcomes, subgroup meta-regression analyses 
demonstrated no significant effect of sex, MQS, hydro-
gel type, Animal model on either ESV, EDV, ESD, EDD, 
infarct size, or wall thickness (Fig.  4, Supplementary 
Figure 6–11).

Publication Bias
Funnel plot analyses conducted on primary outcomes in 
a murine small animal model revealed the presence of 
significant publication bias. The funnel plots depicting EF 
and FS exhibited an asymmetric distribution. Both Begg’s 
and Egger’s tests confirmed the presence of publication 
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Fig. 3 Forest plot to study the effect of injectable hydrogel combination therapy on EF outcomes in a non-murine animal model in the myocardial 
infarction treatment outcome study. Data are expressed as weighted mean differences with 95% CIs, using generic inverse-variance random-effects 
models. Between-studies heterogeneity was tested by using the Cochran Q statistic (chi-square) at a significance level of P < 0.05. Reference 
numbers for each study can be found in Table 1 and list of references
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bias in EF (P = 0.001). Additionally, Egger’s test identified 
bias in FS (P = 0.007). Given the discrepancies in the FS 
results (Begg’s test P = 0.575, Egger’s test P = 0.007), we 
rely on Egger’s test due to its slightly higher efficacy in 
testing (Fig. 5).

Furthermore, the funnel plots for other secondary indi-
cators displayed publication bias in all metrics, except for 
End Diastolic Volume, which showed no evidence of pub-
lication bias (Supplementary Figure 10).

In the case of trials involving large animals, the fun-
nel plot for EF did not portray any noticeable asymme-
try (Supplementary Figure 11). Both Egger’s and Begg’s 
tests yielded non-significant results for publication bias 
in EF, with reported values of P = 0.39 and P = 1.000, 
respectively. Unfortunately, the available data provided 
insufficient evidence to evaluate publication bias for FS 
and other secondary metrics in these trials.

Discussion
Limited systematic evaluations and meta-analyses 
have been conducted on the therapeutic effective-
ness of injectable hydrogels for infarcted myocardium. 
However, a previous comprehensive review encom-
passing different biological scaffolds (including inject-
able hydrogels, microspheres, and patches) combined 
with stem cell delivery to the infarcted myocardium 
revealed injectable hydrogels to be superior to other 
scaffold types [97]. Therefore, our study aimed to fur-
ther investigate injectable hydrogels. We conducted an 
analysis of 83 relevant publications, specifically focus-
ing on cardiac morphological and functional meas-
urements that were assessed at the conclusion of the 
follow-up period in animal models with myocardial 
infarction induced through left coronary artery liga-
tion. These evaluations encompassed combinations of 
chemically synthesized hydrogels or naturally derived 
hydrogels with various therapies, using a control group 
receiving only hydrogel injections. Our findings dem-
onstrated that the combination of injectable hydrogel 
and therapy significantly improved primary outcomes, 
including Ejection Fraction and left ventricular short-
axis shortening rate, in comparison to hydrogel injec-
tion alone. Additionally, secondary outcomes such 
as ESD, EDD, ESV, EDV, wall thickness, and infarct 
size exhibited substantial enhancements. Subgroup 
analyses indicated a limited body of literature on 

extracellular vesicle therapy, which poses challenges in 
drawing definitive conclusions. Cellular therapies, par-
ticularly those involving stem cells, consistently dem-
onstrated positive effects. Although the classification 
of polypharmacy is complex due to the combination of 
various therapies, it is evident that the combined effect 
surpasses that of cellular therapy alone. Moreover, the 
implementation of targeted therapies at each stage of 
myocardial infarction holds promise as a comprehen-
sive approach, deserving further investigation.

Monotherapy
Cellular therapy
Cell therapy, particularly focusing on stem cell therapy, 
remains a central area of investigation in combination 
therapy research [98, 99]. The literature predominantly 
emphasizes mesenchymal stem cells (MSCs) [62], 
monocytes [37], embryonic stem cells [45], and human-
induced pluripotent stem cells [23]. The integration of 
stem cell therapy with hydrogel protocols finds applica-
tions in the repair of spinal cord injuries [100, 101], osteo-
arthritis treatment [102], chronic diabetic wound healing 
[103], cardiovascular disease treatment [104, 105], and 
hind limb ischemia treatment [106]. MSCs [107] emerge 
as a promising option due to their ease of isolation, 
robust proliferative capacity, immunomodulatory ability, 
and diverse differentiation potential [108]. Many studies 
encapsulate MSCs from various sources (e.g., bone mar-
row, adipose tissue, umbilical cord blood) within hydro-
gels. The enhanced paracrine secretion by MSCs plays a 
crucial role in the effective repair of cardiac tissue [109]. 
However, certain research suggests that encapsulation 
can impact stem cell proliferation and paracrine capabil-
ity, likely due to limited intercellular interactions within 
hydrogels, resulting in reduced cytokine secretion [110]. 
MSCs are often subjected to pre-treatment using phys-
icochemical environments (hypoxia [111], hyperoxia 
[112], hydrogen sulfide [113]), pharmacological modifi-
cations (trimetazidine [114], lipopolysaccharide [115]), 
and genetic modifications (CXCR4 [116], SDF-1 [117], 
and HGF [118]) to enhance the paracrine mechanism of 
MSCs. Yuanning Lyu et al. [119] utilized a combination of 
human E-cadherin fusion protein (hE-cad-Fc)-encapsu-
lated poly (lactic-co-glycolic acid) (PLGA) particles (hE-
cad-PLGA) along with human mesenchymal stem cells 
(hMSCs) to form 3D cell aggregates, which were then 
incorporated into hyaluronic acid (HA)-based hydrogels. 

(See figure on next page.)
Fig. 4 A meta-regression analysis of variables of interest affecting changes in left ventricular ejection fraction. A dichotomous a priori subgroup 
analysis was performed in a trial examining the effect of hydrogel combination therapy on ejection fraction. Point estimates at each subgroup 
level are pooled effect estimates for ejection fraction in the hydrogel combination therapy group compared with the hydrogel-only therapy group. 
a. Hydrogel type, b. Combination therapy, c. Sex, d. Small animal model, e. Time of treatment, f. Durations, g. MQS and h. Animal model were 
subjected to subgroup analysis. MQS = Hyland Methodological Quality
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Fig. 4 (See legend on previous page.)
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Incorporating hepatocyte growth factor (HGF)-modified 
MSCs onto small molecule hydrogels increased Bcl-2 lev-
els, while decreasing Bax and cystein-3 levels, promoting 
MSC growth and proliferation, and inhibiting apoptosis 
of cardiomyocytes in the lesioned areas. The pretreat-
ment of MSCs proved more effective than the study 
without pretreatment. In conclusion, the combination of 
cell therapy and hydrogel treatment for heart attacks has 
displayed significant therapeutic effects. This approach 
offers advantages in promoting tissue regeneration and 
facilitating healing in areas affected by myocardial infarc-
tion through the use of various stem cells or immune 
cells. To address potential concerns with cell therapy, 
related studies have explored alternative approaches such 
as extracellular vesicle therapy or cytokine therapy, which 
can help mitigate immunogenicity concerns [120].

Cytokine therapy
Cytokines (CK) are soluble, low-molecular-weight 
proteins secreted by various cells and are involved in 
immune regulation, cell growth, and tissue repair [121]. 
They encompass different categories, including inter-
leukins, interferons, tumor necrosis factor superfam-
ily, colony-stimulating factors, chemokines, and growth 
factors. Cytokines play a central role in both the innate 
and adaptive immune systems, facilitating cell prolifera-
tion, activation, and maintaining physiological functions 
[122]. Jeffrey E. Cohen et al. [22] demonstrated improved 
ventricular function under ischemic conditions by incor-
porating epidermal growth factor neuromodulatory 
protein (NRG) into gelatin hydrogels, which stimulated 
cardiomyocyte mitogenic activity, reduced apoptosis, and 
enhanced ischemic ventricular function. Other treatment 

Fig. 5 Funnel plots for the effect of Injectable hydrogel-based combination therapy on (A) ejection fraction and (B) fractional shortening in small 
animal studies
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regimens primarily involve combinations of growth 
factors such as VEGF, bFGF, and HGF. Considering 
the complex post-ischemic myocardial environment, 
cytokine therapy alone may not provide comprehensive 
repair. Forest plot data indicate that cytokine therapy 
falls behind other treatments in terms of morphological 
outcomes following myocardial infarction. As a result, 
combination therapies or the integration of diverse 
approaches are often preferred, with further exploration 
discussed in the subsequent Multitherapy section.

Extracellular vesicle therapy
Extracellular vesicles, nanoscale vesicles that result from 
paracellular secretion, are abundant in the extracellular 
fluids of animals [123]. Furthermore, it has been demon-
strated in related studies that beneficial exosomes can be 
isolated from plants [124]. These vesicles contain diverse 
biologically active components and possess properties 
such as immunomodulation, low antigenicity, and tissue 
protection [125]. Specifically, exosomes, a subset of these 
vesicles, carry biologically active biomolecules, including 
proteins, nucleic acids, lipids, and sugars, granting them 
a range of biological functions [126]. Their ability to serve 
as nanocarriers facilitates cell-mediated drug delivery, 
thereby maximizing therapeutic efficacy. Notably, cer-
tain exosomal proteins exhibit selective homing abilities, 
enhancing the efficiency of delivery [127]. The yield of 
exosomes is influenced by the type of cells involved, with 
immune cells often producing consistent and therapeu-
tically potent yields. Clinical trials have successfully uti-
lized exosomes in the diagnosis and treatment of various 
diseases [128–130].

In the setting of myocardial infarction, it is important 
to acknowledge that directly injected exosomes may be 
rapidly cleared due to the myocardial environment. As 
a result, there has been a growing interest in injectable 
hydrogel scaffolds to enhance the retention of extracellu-
lar vesicles. In a study conducted by Carol W. Chen et al. 
[35], it was demonstrated that extracellular vesicles, iso-
lated from endothelial progenitor cells and anchored to 
shear-thinning hydrogels, promote angiogenesis, support 
functional recovery, and mitigate adverse ventricular 
remodeling after an infarction. Current research sug-
gests that the therapeutic effects of MSCs are likely due 
to their paracrine release of cytokines, growth factors, 
and exosomes, rather than their direct cellular effects 
[131, 132]. Renae Waters et al. [25] utilized lipid-derived 
MSCs on methacrylate-based gelatin nanocomposite 
scaffolds, achieving sustained release of important thera-
peutic growth factors that stimulate angiogenesis, reduce 
scarring, and protect the heart. Youming Zhang et al. [89] 
employed dendritic cell-derived exosomes on alginate 
hydrogels, revealing enhanced upregulation of Treg cells, 

polarization of M2 macrophages, reduction of inflam-
mation, and cardiac protection following a myocardial 
infarction. In summary, extracellular vesicle therapy, 
which harnesses the paracrine/autocrine mechanisms of 
MSCs primarily mediated by exosomes, plays a crucial 
role in mitigating apoptosis, reducing inflammation, pro-
moting angiogenesis, inhibiting fibrosis, and augmenting 
tissue repair. This meta-analysis highlights the superior-
ity of experiments involving extracellular vesicles com-
pared to other methods in terms of myocardial functional 
recovery. However, morphological recovery remains lim-
ited, and further studies are needed due to the scarcity 
of literature in this area. Several challenges persist in the 
development of extracellular vesicles, including the intri-
cate isolation procedures and suboptimal yields [133].

Drug therapy
A wide range of medications used in combination with 
hydrogel for the treatment of myocardial infarction 
includes natural bioactive drugs such as tanshin and col-
chicine [90], curcumin [134], compounds (NO [135], Se 
[136]), and various synthetic products. Bioactive drugs, 
including curcumin and quercetin, possess strong anti-
inflammatory, anti-apoptotic, and tissue repair proper-
ties. However, their limited solubility in water hinders 
efficient delivery through oral or traditional methods. In 
a study conducted by Cui Yang et al. [136], Se-containing 
PEG-PPG hydrogels were utilized to reduce pro-inflam-
matory cytokine secretion, improve myocardial fibrosis, 
and enhance left ventricular remodeling.

The common characteristic observed among the drugs 
explored in this section is their demonstrated effective-
ness in treating cardiovascular diseases [134, 137]. Nev-
ertheless, their long-term efficacy is often compromised 
by difficulties in delivery. Hydrogels enable the sustained 
release of drugs [9], enhancing the local pharmacologi-
cal benefits while minimizing systemic side effects. This 
approach is more effective in addressing the prolonged 
and complex pathological environment [138–140].

Nucleic acid therapy
Nucleic acids, such as deoxyribonucleic acid (DNA) and 
ribonucleic acid (RNA) [141], are vital biomolecules pre-
sent in living organisms. They are composed of a polym-
erization of numerous nucleotide monomers. Nucleic 
acid therapy has been established as a safe and effective 
approach for treatment. This therapeutic method has 
shown significant potential in gene regulation, leading 
to its rapid advancement in cancer treatment as well as 
the prevention and management of infectious diseases. 
In particular, mRNA vaccines developed for COVID-
19 have played a pivotal role in combating the ongoing 
viral pandemic [142]. However, despite the promising 
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prospects of nucleic acid therapy, challenges persist in 
manufacturing, delivery strategies, and targeted site 
retention.

Nucleic acid therapies, which involve targeting genetic 
information within the body, hold substantial poten-
tial for disease treatment. Unlike conventional therapies 
with limited effectiveness, nucleic acid approaches have 
the ability to produce long-lasting effects by modulat-
ing genes through suppression, addition, replacement, 
or editing [97]. However, when applied to cardiovascular 
diseases, nucleic acid delivery alone is not sufficient due 
to challenges such as enzymatic degradation, short serum 
half-life, and low cell transfection efficiency [143]. From a 
clinical perspective, ensuring effective delivery and reten-
tion of nucleic acids at the intended target sites is con-
sidered crucial for the success of nucleic acid therapy [9].

Hydrogels serve as promising platforms for nucleic 
acid therapies, but they require specific chemical modi-
fications to ensure prolonged retention and stability 
of nucleic acids during treatment, as well as targeted 
tissue localization and efficient cell delivery. In a rat 
model, Wei-Guo Wan et  al. [79] reported cardioprotec-
tive effects by combining a hydrogel with short-hairpin 
RNA (shRNA). Yan Li et al. [85] developed an injectable 
hydrogel system for microRNA-21-5p, which showed sig-
nificant improvements in key indicators and reaffirmed 
the therapeutic potential of gene/nucleic acid therapy for 
myocardial infarction.

The microenvironment of the myocardium post-myo-
cardial infarction undergoes a prolonged and complex 
immune response. Although preclinical studies have pro-
vided limited in-depth exploration, drawing definitive 
conclusions from the small number of existing studies 
remains challenging [144]. However, these limited find-
ings do suggest the potential of nucleic acid therapy in 
reducing nucleic acid clearance through hydrogel combi-
nations and effectively restoring damaged myocardial tis-
sue through continuous and substantial gene regulation.

Multitherapy
Over the past decade, clinical insights and preliminary 
studies have revealed that a singular approach to treat-
ment falls short of achieving optimal therapeutic out-
comes due to the multifaceted nature and physiological 
intricacies of the disease [145]. As a result, with advance-
ments in drug delivery techniques, the exploration of 
combination or multitherapy has emerged as a promising 
avenue of research [145].

Adam J. Rocker et al. [20] adopted a sequential delivery 
method for three cytokines: vascular endothelial growth 
factor (VEGF), interleukin-10 (IL-10), and platelet-
derived growth factor (PDGF). Initially, VEGF induced 
angiogenesis and suppressed cardiomyocyte necrosis, 

followed by the modulation of excessive inflammation by 
IL-10. The final delivery of PDGF aimed to stabilize the 
myocardial microenvironment and rejuvenate substan-
tial hemodialysis. This multicytokine approach tailored 
interventions to the therapeutic demands of various 
pathological phases. However, while these findings are 
promising, analysis suggests that the role of PDGF may 
be limited, indicating the need for further refinement of 
the regimen. Combining cell therapy with drug therapy 
has also demonstrated significant therapeutic potential. 
Enhancing the paracrine impact of MSCs through bioma-
terial integration can greatly boost therapeutic efficiency, 
as the full potential of the paracrine function of diverse 
stem cells is often not realized. Yang Liu et al. [86] incor-
porated stem cells with puerarin, a natural scavenger of 
ROS, to mitigate cardiomyocyte damage. Concurrently, 
in combination with puerarin, bone-derived mesenchy-
mal stem cells increased the secretion of paracrine fac-
tors. A similar approach was employed by Shilan Shafei 
et al. [72], further highlighting the synergistic potential of 
such combinations.

In summary, strategic combinations of therapies can 
yield synergistic effects where the combined outcome 
surpasses the sum of individual contributions [145]. The 
advantages of combining multiple therapeutic agents 
outweigh the drawbacks of individual therapies, leading 
to significant therapeutic benefits [146]. However, it is 
crucial to ensure effective treatment while also consider-
ing biosafety [147]. The future direction of development 
lies in establishing efficient and safe approaches for com-
bination therapy that undergo repeated research valida-
tion and clinical testing.

Hydrogel source
Injectable hydrogels have been found to be superior to 
other biological scaffold materials for drug delivery and 
cardiac implantation [148].

Various experimental results have shown that hydrogel 
injections can effectively impart specific physical, chemi-
cal, and electrical characteristics to the post-infarct myo-
cardial area. This paper categorizes injectable hydrogels 
into two types: those of natural origin and those that are 
chemically synthesized. Natural-origin hydrogels, includ-
ing collagen, fibrin, decellularized materials, chitosan, 
and alginate, display commendable biochemical prop-
erties, bioactivity, and biocompatibility, making them 
well-suited for in vivo implantation [149]. However, these 
naturally-derived hydrogels face challenges such as inad-
equate mechanical properties, consistent degradation 
rates, antioxidant capacities, and the necessary electri-
cal conductivity for implantation [150]. In a clinical trial 
involving alginate injectable hydrogels, a higher mortality 
rate was observed in patients with advanced heart failure 
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who received hydrogel implants compared to those with-
out injections, highlighting significant limitations in the 
clinical application of natural hydrogels [151]. On the 
other hand, chemically synthesized hydrogels [152] (such 
as PNIPAAm-based hydrogels, Aniline-Based Materi-
als, and PEG-based hydrogels) offer superior mechani-
cal properties and stability compared to natural origin 
hydrogels [153], but often compromise biocompatibility 
[154]. Subgroup analyses have demonstrated superior 
functional recovery with natural hydrogels, while chemi-
cally synthesized hydrogels excel in morphological recov-
ery. Therefore, the fusion of both categories in the form 
of hybrid hydrogels emerges as a promising avenue for 
future research [155].

Hybrid hydrogels provide versatile design options and 
adaptability to different functions, making them effective 
in various tissues. Given the distinctive vascular struc-
ture, electrical conduction signal function, high metabo-
lism, and high compliance characteristics of myocardial 
tissue, it is crucial to construct injectable complexes 
using hybrid hydrogels specifically tailored for myocar-
dial tissue [155]. The findings of this systematic review 
demonstrate that hybrid hydrogels designed based on the 
cardiac tissue structure can optimize M2 macrophage 
polarization, promote angiogenesis, enhance repair 
response (as indicated by the cardiomyocyte survival 
rate), thereby reducing infarct size, improving wall thick-
ness, and enhancing cardiac contractility.

Publication Bias and quality assessment
Consistent with previous research, this analysis identi-
fied significant publication bias for the primary outcomes 
of Ejection Fraction and Fractional Shortening. The bias 
persisted even after conducting a sensitivity analysis. It is 
crucial to address this publication bias in order to facili-
tate genuine clinical trials utilizing injectable hydrogels 
for myocardial infarction treatment. Evaluation of the 
SYRCLE risk of bias tool revealed pronounced selec-
tion and implementation biases in many studies. Further 
refinement of research methodologies for myocardial 
infarction animal models, particularly in interdisciplinary 
settings, is necessary. To ensure reliable and replicable 
experimental results, it is imperative to employ blinded 
protocols for establishing animal models, treatment allo-
cation, and outcome measurement.

Within the reviewed literature, the MQS analysis iden-
tified 66 (69.5%) high-quality articles. However, a signifi-
cant portion of these studies either omitted details in the 
randomization protocol or did not utilize blinding meth-
ods for their experiments. During data collection, stud-
ies lacking primary outcome indicators were excluded, 
resulting in the omission of relevant experimental stud-
ies. Future research should prioritize the reporting of 

echocardiographic parameters and morphological assess-
ments. Comprehensive reporting will not only ascertain 
the efficacy of experimental protocols but also provide 
dependable results for subsequent literature reviews and 
inform future research endeavors. Similar to the chal-
lenges observed with nucleic acid therapies discussed 
earlier, the lack of data compromised the depth of the lit-
erature analysis.

Strengths and limitations
The meta-analysis included 83 papers and provided valu-
able insights into current research trends. However, there 
are certain limitations that need to be acknowledged. 
Firstly, the study primarily focused on murine small ani-
mal models due to modeling challenges, and there was 
limited exploration of large animal models. Therefore, 
conducting further large animal experiments is neces-
sary to validate the findings. Secondly, it is important to 
standardize the experimental data in order to facilitate 
future analyses. Thirdly, the current study faces hetero-
geneity due to variations in the targeted drug delivery 
method applied to the heart and the limited number of 
animal studies available at this stage. This heterogeneity 
poses a significant barrier to further clinical translation. 
To address this, standardized large-scale animal experi-
ments are required for validation. Lastly, publication bias 
was identified in the main outcome indicators, which 
merits attention.

Clinical transformation status
With the rapid advancement of hydrogel technology, the 
clinical use of hydrogel-based combination therapy for 
various diseases is increasing. While preclinical stud-
ies have extensively investigated hydrogel combina-
tion therapy for targeted drug delivery and tissue defect 
repair, there are significant challenges in translating these 
findings into clinical practice. Hydrogel wound dress-
ings have gained popularity in clinical settings due to 
their ease of implementation [156, 157]. However, when 
it comes to diseases that require interventional therapy, 
conducting effective clinical trials presents substantial 
difficulties. Therefore, addressing the safety concerns 
associated with delivery methods is a prerequisite for 
the progress of injectable hydrogel combination therapy 
[158].

Clinical trials involving hydrogels in the context of 
cardiac applications remain limited. The unique struc-
tural characteristics of the human heart contribute to the 
relatively slow progress in developing clinical trials and 
exploring indications and contraindications. In a rand-
omized controlled trial conducted in 2020, the injection of 
collagen hydrogel encapsulating mesenchymal stem cells 
via coronary artery bypass grafting was evaluated [159]. 
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The trial results showed no adverse reactions. Evaluation 
of the left ventricular ejection fraction at three follow-up 
time points (3, 6, and 12 months) indicated percentages of 
9.14, 9.84, and 9.35% in the hydrogel combined with stem 
cell treatment group, while the control group exhibited 
percentages of 4.17, 4.40, and 3.62%. Analysis of cardiac 
morphological indicators demonstrated no significant 
changes in myocardial scar tissue in the hydrogel com-
bined with the stem cell group after the 12-month fol-
low-up period. In contrast, both the stem cell treatment 
group and the control group showed a significant increase 
in scar tissue. These clinical trial results suggest that the 
hydrogel combined with stem cell treatment exhibits 
long-term therapeutic effects, improving cardiac function 
and morphology.

In conclusion, achieving comprehensive clinical trans-
formation in hydrogel-based combination therapy for 
myocardial infarction depends on further optimizing the 
therapeutic approach and enhancing the safety and effi-
ciency of the delivery method.

Conclusion
This article focuses on evaluating the therapeutic efficacy 
of injectable hydrogels compared to other types of bio-
delivery scaffolds, as determined through a systematic 
review and meta-analysis. Additionally, this study exam-
ines the therapeutic effectiveness of combining inject-
able hydrogels with different therapies in animal models 
of myocardial infarction. The findings demonstrate that 
the combination of injectable hydrogels with other thera-
pies significantly enhances therapeutic outcomes in the 
ischemic myocardial region, which is crucial for restoring 
myocardial function and preserving cardiac morphology. 
The analysis reveals that various combination therapy 
regimens effectively restore myocardial function and 
maintain cardiac morphology. Specifically, cellular ther-
apy consistently proves to be therapeutically effective. 
Moreover, through careful design of functional adapta-
tion and action staging, the utilization of a Multitherapy 
approach exhibits a synergistic effect, resulting in better 
outcomes compared to individual therapies alone.

Analyses have demonstrated the close interrelation 
between the recovery of myocardial function and mor-
phology. However, given the complexity of the recovery 
process following myocardial ischemia, individual thera-
pies often fall short in achieving efficient restoration of 
both functional and morphological aspects. Sole reli-
ance on drugs or cellular therapies is inadequate to fully 
recover damaged myocardium. Therefore, future research 
should focus on exploring the potential of combined 
therapies. Furthermore, as the study of combination 
therapies progresses, it becomes increasingly important 
to systematically evaluate and conduct meta-analyses of 

protocols involving injectable hydrogels, which present 
challenges in subdivision.

In conclusion, hydrogel-based combination therapy 
demonstrates significant therapeutic effects for myo-
cardial infarction. Based on our analysis of multiple 
literature sources, we strongly recommend comprehen-
sive monitoring of the therapeutic process and out-
come measures in small animal models. Subsequently, 
large-scale animal experiments should be conducted to 
validate these effects. Such an approach will provide reli-
able references for clinical translation and enhance our 
understanding of hydrogel-based combination therapy. 
Through a meta-analysis of a wide range of preclinical 
studies, combined with the findings from conducted clin-
ical trials, it has been demonstrated that hydrogel-based 
combination therapy yields positive outcomes for the 
treatment of myocardial infarction.
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effect of injectable hydrogel combination therapy on infarct size. Mean 
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Funnel plot for the effect of Injectable hydrogel combination therapy 
on (A) End Systolic Diameter, (B) End Diastolic Diameter, (C) End Systolic 
Volume, (D) End Diastolic Volume, (E) Infarct Size, and (F) Wall Thickness. 

Supplement Figure 13. Funnel plot for the effect of Injectable hydrogel 
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