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Abstract
Objective We aimed to explore the heterogeneity of neurons in heart failure with dilated cardiomyopathy (DCM).

Methods Single-cell RNA sequencing (scRNA-seq) data of patients with DCM and chronic heart failure and healthy 
samples from GSE183852 dataset were downloaded from NCBI Gene Expression Omnibus, in which neuron data 
were extracted for investigation. Cell clustering analysis, differential expression analysis, trajectory analysis, and 
cell communication analysis were performed, and highly expressed genes in neurons from patients were used to 
construct a protein-protein interaction (PPI) network and validated by GSE120895 dataset.

Results Neurons were divided into six subclusters involved in various biological processes and each subcluster 
owned its specific cell communication pathways. Neurons were differentiated into two branches along the 
pseudotime, one of which was differentiated into mature neurons, whereas another tended to be involved in the 
immune and inflammation response. Genes exhibited branch-specific differential expression patterns. FLNA, ITGA6, 
ITGA1, and MDK interacted more with other gene-product proteins in the PPI network. The differential expression of 
FLNA between DCM and control was validated.

Conclusion Neurons have significant heterogeneity in heart failure with DCM, and may be involved in the immune 
and inflammation response to heart failure.

Keywords Heart failure, Dilated cardiomyopathy, Neuron, Immune and inflammation response, Differentiation 
trajectory
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Introduction
Heart failure is a kind of frequent clinical syndrome 
worldwide, especially in the population over the age of 
65 years, which affects about 21 per 1,000 people [1]. It 
occurs when the heart is unable to supply enough cardiac 
output to maintain the metabolic demands as a result 
of structural or functional defects in the myocardium 
[2]. Heart failure carries a high morbidity and mortality, 
the latter is up to 50% within 5 years, resulting in many 
intensive care unit (ICU) admissions [3, 4]. Patients usu-
ally spend several days in the ICU, however, the cost of 
hospitalization represents the greatest proportion of the 
total cost of heart failure, and the risk of death or read-
mission is high [5, 6]. Heart failure hospitalization rates 
are rising over time, bringing severe economic pressure 
to patients and heavy burdens on public health care sys-
tems [7]. Unfortunately, the number of patients with 
heart failure is on an upward trend due to the growth of 
the global population and the aging population as well as 
the prolonged survival of heart failure patients [8–10]. 
Therefore, the improvement of therapeutic strategies 
is an urgent need for heart failure prevention and treat-
ment. Furthermore, as widely acknowledged, there exists 
a strong association between dilated cardiomyopathy 
(DCM) and the development of chronic heart failure. 
Failure to receive appropriate, scientific, and efficacious 
treatment in DCM patients significantly increases their 
susceptibility to progressing toward chronic heart fail-
ure, ultimately leading to mortality. Consequently, DCM 
patients are frequently chosen as subjects for predictive 
investigations pertaining to chronic heart failure. It is 
evident that further investigation into DCM, acquiring 
additional insights, and implementing more scientifically 
rigorous treatment approaches for DCM will contribute 
to the prevention of chronic heart failure.

Single-cell RNA sequencing (scRNA-seq) technologies 
offer great opportunities to characterize individual cells 
and identify cell heterogeneity, which may contribute to 
enhancing the knowledge of the cellular mechanisms of 
heart failure [11]. Recently, Koenig et al. applied scRNA-
seq to patients with chronic heart failure, and revealed 
the cellular landscape of the failing human heart, provid-
ing a valuable data resource for investigation in this field 
[12]. In the present study, we focused on the neurons in 
heart failure with DCM and explored their heterogeneity, 
differentiation trajectory, and biological functions. This 
study may deepen the understanding of the role of neu-
rons in heart failure, and provide novel insight into heart 
failure.

Methods
Cell clustering analysis
The scRNA-seq profile GSE183852 was obtained from 
NCBI Gene Expression Omnibus, in which neuron data 

of patients with chronic heart failure (dilated cardiomy-
opathy, DCM) (HDCM1, HDCM3, HDCM4, HDCM6, 
HDCM8, n = 5) and healthy samples (HDCM5, HDCM7, 
n = 2) were extracted for further analysis. The detailed 
information on the samples was exhibited in Supplemen-
tal Table 1. Seurat R package [13] was utilized for cell 
clustering analysis. SCTransform function was used for 
data normalization. RunPCA function was applied for 
principal component analysis (PCA), and the top 20 prin-
cipal components were adopted to construct the com-
mon nearest-neighbor graph. Harmony R package [14] 
was conducted to remove the batch effects. FindClusters 
and RunUMAP functions were employed respectively for 
cell clustering and visualization.

Trajectory analysis
Monocle2 R package [15] was used for trajectory analysis. 
Genes with mean expression value > 0.1 and expression in 
at least 10 cells were adopted for analysis. reduceDimen-
sion function was applied for dimensionality reduction 
with DDRTree method. Cells were ordered by orderCells 
function to construct the pseudotime trajectory. Genes 
that varied along the pseudotime were detected by dif-
ferentialGeneTest function and visualized by plot_pseu-
dotime_heatmap function. Branch-specific genes were 
determined by BEAM function and visualized by plot_
genes_branched_heatmap function.

Cell communication analysis
Communication between cells and cells extremely plays 
a crucial role in plenty of physiological and pathologi-
cal mechanisms. In this research, the identifying and 
illustrating alterations in intercellular signaling network 
(iTALK) R package [16] was employed to perform cell 
communication analysis among six neuron subclusters 
with the aim of illustrating intercellular communication 
signals. The analysis was carried out with a number of 4 
kinds of factors, including cytokine, checkpoint, growth 
factor, and other factors, which can reveal the neuron 
subcluster interactions.

Differential expression analysis
FindAllMarkers function from Seurat R package was 
used to identify the differentially expressed genes (DEGs) 
between neuron subclusters. The functional enrichment 
analysis, including Gene Ontology (GO) and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) [17] was per-
formed by Database for Annotation, Visualization, and 
Integrated Discovery (DAVID) [18].

Construction of PPI network
Highly expressed genes involved in neural function bio-
logical processes in DCM samples were used to construct 
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the protein-protein interaction (PPI) network through 
STRING [19].

DEG validation
The dataset GSE120895, containing gene expression data 
from a total of 47 DCM patients with symptoms of heart 
failure and 8 healthy individuals, was obtained from the 
Gene Expression Omnibus (GEO) database as the vali-
dation set in order to compare the expression levels of 
DEGs we obtained in the current study between individ-
uals with DCM and healthy controls.

QRT-PCR validation
In order to validate the expression levels of the key genes 
in the PPI network in patients, samples from DCM 
patients and healthy volunteers were collected. Informed 
consent was obtained from each of all patients and vol-
unteers, and the ethical approval for this study was also 
obtained from the Medical Ethics Committee of Shang-
hai Fifth People’s Hospital, Fudan University. After sam-
ple collection, total RNA was extracted from samples 
obtained from the individuals with DCM and healthy 
volunteers, followed by the reverse transcription proce-
dure to obtain cDNA. Then, the qRT-PCR experiment 
was performed. The PCR reaction was performed with 
the reaction system constructed by ChamQ Universal 
SYBR qPCR master Mix (Vazyme Biotech) and the reac-
tion conditions were as follows: 1 cycle of 90 °C for 30 s, 
40 cycles of 95 °C for 10 s and 60 °C for 30 s. The relative 
expression level of each gene was calculated using the 
2−ΔΔCT method with GAPDH as a reference for normal-
ization. The primer sequences can be found in Supple-
mental Table 2.

Statistical analysis
The statistical analysis was employed in R (4.1.2). Wil-
coxon rank-sum test was utilized for difference com-
parison between samples. P-value < 0.05 was regarded as 
statistically significant.

Results
Heterogeneity of neurons in cardiac tissue
In the first place, we performed the quality control 
analysis in order to ensure the veracity of the following 
research. The nCount_RNA, nFeature_RNA expres-
sion levels, and the proportions of mitochondrial genes 
in neurons within each sample were depicted in Figure 
S1. Subsequently, neurons were divided into six sub-
clusters (Fig. 1A), all of which highly expressed NRXN1 
(Fig. 1B). According to the functional enrichment analy-
sis of cluster-enriched genes (Fig. 1D), different subclus-
ters were associated with various biological processes 
(BP) (Fig. 1C). Neurons 1 mainly participated in neuron 
projection development, axon guidance, myelination, 

chemical synaptic transmission, central nervous system 
myelination, and cell adhesion, indicating that neurons 1 
were mature neurons. Neurons 2 were primarily involved 
in androgen receptor signaling pathway, peptide hor-
mone processing, and negative regulation of cell prolifer-
ation. Neurons 3 referred to cytoplasmic translation and 
rRNA processing. Neurons 4 chiefly took part in extra-
cellular matrix organization, angiogenesis, complement 
activation, wound healing, and cell adhesion. Neurons 5 
were related to skeletal muscle cell differentiation, cel-
lular response to calcium ions, and response to muscle 
stretch. Neurons 6 were principally associated with anti-
gen processing and presentation, immune response, posi-
tive regulation of T cell activation, response to hypoxia, 
defense response to virus, positive regulation of I-kappaB 
kinase/NF-kappaB signaling and angiogenesis, suggest-
ing that neurons 6 were involved in the immune and 
inflammation response. The involved pathways between 
different subclusters were also analyzed, and the results 
indicated that each subcluster exhibited disparate path-
way activity (Fig.  1E). Noteworthily, the KEGG enrich-
ment results demonstrated that the pathway activity of 
each subcluster exhibited a high degree of consistency 
with the results obtained from the enrichment of BP. In 
each sample, neurons 1 was the most (Fig. 1F), suggesting 
that mature neurons accounted for the largest number of 
neurons in cardiac tissue.

Differentiation trajectory of neurons and cell 
communication profiles
Starting with neurons 4, the differentiation trajectory of 
neurons developed two branches along the pseudotime, 
which respectively ended with neurons 1 and neurons 6 
(Fig.  2A and B), implying that with the development of 
neurons, a set of neurons differentiated into mature neu-
rons, while another set of neurons was apt to be involved 
in the immune and inflammation response. Neurons in 
two different branches were named mature neurons and 
inflammatory neurons, respectively. We further explored 
the interaction between neurons in six subclusters. In the 
cytokine module, ITGB1 exhibited a significant active 
signaling pathway across all subclusters (Fig. 2C and D). 
In the checkpoints module, neurons 6 displayed a higher 
number of active signaling pathways compared to other 
groups, for instance, the TNFSF9-TRAF2 receptor-ligand 
pair (Fig.  2E and F). Within the growth factor module, 
CD9 emerged as a significantly active signaling pathway 
in each subcluster. Additionally, HBEGF showed sig-
nificant activity in neurons 3, 5, and 6 (Fig.  2G and H). 
Neurons 4 demonstrated a greater presence of active 
intracellular signaling pathways than other groups in the 
other module (Fig. 2I and J). Subsequently, we found that 
along the pseudotime, genes associated with axonogene-
sis, learning or memory, neuron projection development, 
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central nervous system myelination, central nervous 
system development, and peripheral nervous system 
development were significantly up-regulated, such as 
APP, ERBB3, NGFR, NRXN1, and PMP22 (Fig.  3A and 
B). Genes associated with angiogenesis, wound heal-
ing, collagen fibril organization, and extracellular matrix 

organization were down-regulated, such as LUM, DCN, 
and VCAN. Genes associated with immune response, 
calcium ion transport, response to interferon-gamma, 
T cell receptor signaling pathway, and antigen process-
ing and presentation exhibited an earlier increase and 
later decrease trend. In mature neurons, genes associated 

Fig. 1 Heterogeneity of neurons in cardiac tissue. (A) UMAP plot of six neuron subclusters. (B) NRXN1 expression in six neuron subclusters. (C) Bubble 
chart of enriched biological processes by six neuron subclusters. (D) Bubble chart of several highly expressed DEGs in six neuron subclusters. (E) Bubble 
chart of KEGG enrichment by six neuron subclusters (KEGG data source: www.kegg.jp/kegg/kegg1.html). (F) Number of six neuron subclusters in each 
sample

 

http://www.kegg.jp/kegg/kegg1.html
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with myelination, nervous system development, and 
neuron projection development were significantly up-
regulated along the pseudotime, such as L1CAM, PLP1 
and NRXN1, whereas in inflammatory neurons, genes 
associated with immune response, T cell receptor signal-
ing pathway, antigen processing and presentation, posi-
tive regulation of T cell activation and positive regulation 
of inflammatory response were markedly up-regulated 
along the pseudotime, such as BTNL9 and CD74 (Fig. 3C 
and D).

Gene expression changes in neurons and PPI network 
construction
We explored the gene expression changes in neurons. 
We found that in DCM samples, highly expressed genes 
in neurons were mainly involved in positive regula-
tion of cell migration, angiogenesis, extracellular matrix 
organization, positive regulation of neuron projec-
tion development, cellular response to calcium ions, 
response to hypoxia, axon guidance and neuron migra-
tion, while down-regulated genes participated in oligo-
dendrocyte development, negative regulation of ERK1 
and ERK2 cascade, tissue regeneration, negative regula-
tion of cell proliferation and nuclear migration, and were 
highly involved in Focal adhesion, Apoptosis, and Fluid 
shear stress and atherosclerosis pathways (Fig.  4A and 
C). The highly expressed genes involved in neural func-
tion in neurons were used to construct the PPI network. 
As shown in Fig.  4D, FLNA, ITGA6, ITGA1, and MDK 
interacted more with other gene-product proteins, indi-
cating that they may play important roles in neurons.

Expression level validation of FLNA
According to the result of PPI network, we selected the 
gene FLNA with the highest connectivity to validate the 
expression level in the validation set. The result revealed 
a significantly elevated expression of FLNA in DCM sam-
ples compared to the healthy group (Fig. 4E).

DEG expression levels validation by qRT-PCR
With the aim of validating the mRNA expression lev-
els of DEGs obtained in the current research, qRT-PCR 
experiment was performed. As depicted in Fig.  5, com-
pared to the control group, significant upregulated trends 
of FLNA, ITGA6, ITGA1, and MDK mRNA expression 
were observed in the DCM group.

Discussion
Heart failure is a large chronic epidemic especially in the 
aging population, with considerable mortality and mor-
bidity as well as frequent hospitalizations and readmis-
sions [20]. In recent years, scRNA-seq technologies have 
been applied to heart failure to dissect its cell-specific 
information and provide the cellular landscape, helping 

Fig. 2 Differentiation trajectory of neurons and cell communication pro-
files of each neuron subcluster. (A) Differentiation trajectory of neuron 
subclusters along the pseudotime. (B) Ridgeline plot of six neuron sub-
clusters along the pseudotime. (C, D) Cell communication profiles of cyto-
kine module. (E, F) Cell communication profiles of checkpoint module. (G, 
H) Cell communication profiles of growth factor module. (I, J) Cell com-
munication profiles of other module
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to strengthen the understanding and promote thera-
peutic development of heart failure [21–23]. A recent 
study has conducted comprehensive analyses on bulk 
and scRNA sequencing data in order to clarify the cell 
types involved in heart failure, whose results indicated 
that eleven distinct cell types, including macrophage, 
smooth muscle cell, and dendritic cell, etc., were involved 
in the pathological development of DCM. Furthermore, 
the marker genes associated with fibroblasts, endothelial 
cells, dendritic cells, M1/2 macrophages, neutrophils, 

and smooth muscle cells were significantly enriched 
within the upregulated genes in DCM [24]. Similarly, 
there was also recent research that attempted to reveal 
the heart cell types through the analysis of transcriptome 
profiles and machine learning, which obtained similar 
results for cell types [25]. Nevertheless, limited relevant 
investigations on cardiac neurons have been conducted, 
and there are still significant gaps in our current knowl-
edge of the comprehension of cardiac neurons. In this 
study, we focused on the heterogeneity, differentiation 

Fig. 3 Variations in gene expression of neurons along the pseudotime. (A) Heatmap of enriched biological processes by genes that varied along the 
pseudotime. (B) Expression of genes that varied along the pseudotime. (C) Heatmap of enriched biological processes by branch-specific genes. (D) 
Expression of branch-specific genes
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Fig. 5 The FLNA, ITGA6, ITGA1, and MDK mRNA expression levels validation between the DCM and healthy control group by qRT-PCR. **P < 0.01; 
***P<0.001; ****P < 0.0001

 

Fig. 4 Gene expression changes in neurons. (A) Bubble chart of enriched biological processes by DEGs in neurons in DCM samples. (B) Bubble chart of 
KEGG enrichment by DEGs in neurons in DCM samples (KEGG data source: www.kegg.jp/kegg/kegg1.html). (C) Bubble chart of several highly expressed 
DEGs in neurons in DCM samples. (D) PPI network constructed by highly expressed genes in neurons. (E) Differential FLNA expression between DCM 
samples and healthy controls (** p < 0.01)
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trajectory, and biological functions of neurons in heart 
failure with DCM, and revealed cell-specific gene expres-
sion patterns.

Neurons from the patients who suffered from heart 
failure with DCM were divided into six subclusters with 
high expression of NRXN1. NRXN1-encoded protein, 
neurexin 1, is a synaptic adhesion molecule, which is a 
member of the neurexin protein family. Neurexins play 
an important role in the vertebrate neurophysiological 
processes, facilitating the structure and function of syn-
apses [26]. Previous studies have revealed that NRXN1 is 
associated with neurological diseases and developmen-
tal disorders, such as schizophrenia [27–29]. Zhang et 
al. also observed the overexpression of NRXN1 in heart 
failure and myocardial infarction samples and found that 
patients with high NRXN1 expression had an increased 
risk of heart failure [30]. The aforementioned state-
ment aligns with the findings of our research that heart 
failure is highly associated with inflammatory neurons 
exhibiting a high level of NRXN1 expression. Functional 
enrichment analysis showed that neuron subclusters 
were involved in various biological processes, including 
synaptic formation, development and signal transmis-
sion, angiogenesis, immune and inflammation response, 
and so on, indicating that different kinds of neurons 
perform complex biological functions in heart failure. 
Along the differentiation trajectory, neurons developed 
two branches, one of which differentiated into mature 
neurons, while another set of neurons were involved in 
the immune and inflammation response. Previous stud-
ies have observed elevated levels of pro-inflammatory 
cytokines and chemokines in patients with heart fail-
ure [31, 32], and targeted anti-inflammatory therapy 
diminished heart failure-related hospitalization and 
mortality [33]. Therefore, according to the statement of 
previous research and the findings of the current study, 
we inferred that the inflammatory neurons with high 
expression of NRXN1 can trigger immune and inflamma-
tory responses, which can contribute to the pathogenesis 
of heart failure [34]. Communication exists between the 
immune and the nervous systems [35]. Neuronal signal-
ing can limit the immune and inflammation response 
by controlling cytokine release to prevent tissue damage 
[36]. Gene expression was changed in neurons in heart 
failure with DCM, and up-regulated DEGs were mainly 
involved in angiogenesis, extracellular matrix organiza-
tion, cell migration, response to hypoxia, and so on, sug-
gesting that neurons may enhance the activities of these 
biological processes as potential compensation to allevi-
ate disease progression in the failing heart. Several genes 
were thought to be important in neurons through the PPI 
network, including FLNA, ITGA1, ITGA6, and MDK. 
FLNA encodes an actin-binding cytoskeletal protein and 
plays a role in cell-cell contact in heart and vasculature. 

Loss of FLNA results in vascular defects and cardiac 
structural and functional defects, leading to a heart fail-
ure phenotype [37, 38]. ITGA1 and ITGA6 encode pro-
teins of integrin alpha subunit. Integrins are cell-surface 
receptors involved in cell-cell adhesion. The myocardial 
cells are anchored to the extracellular matrix by integrins, 
which contribute to maintaining the architecture and 
function of myocardium [39]. MDK encodes a heparin-
binding protein, which is involved in cell growth, migra-
tion, inflammation, and angiogenesis [40]. The circulating 
level of MDK was increased in patients with heart failure, 
and MDK may be a potential marker of heart failure with 
DCM [41, 42].

Conclusion
In conclusion, neurons have significant heterogeneity 
in heart failure with DCM and may be involved in the 
immune and inflammation response to heart failure. 
FLNA, ITGA6, ITGA1, and MDK may play an important 
role in neurons in heart failure with DCM.
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